Results 1 
9 of
9
Posterior convergence rates of Dirichlet mixtures at smooth densities
 Ann. Statist
, 2007
"... We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general rate theorem by considering a countable covering of the parameter space whose prior probabilities satisfy a summability condition together with certain individual bounds on the Hellinger metric entropy. We apply this new general theorem on posterior convergence rates by computing bounds for Hellinger (bracketing) entropy numbers for the involved class of densities, the error in the approximation of a smooth density by normal mixtures and the concentration rate of the prior. The best obtainable rate of convergence of the posterior turns out to be equivalent to the wellknown frequentist rate for integrated mean squared error n −2/5 up to a logarithmic factor. 1. Introduction. Kernel
Philosophy and the practice of Bayesian statistics
, 2010
"... A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypotheticodeductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.
DYNAMICS OF BAYESIAN UPDATING WITH DEPENDENT DATA AND MISSPECIFIED MODELS
, 2009
"... Recent work on the convergence of posterior distributions under Bayesian updating has established conditions under which the posterior will concentrate on the truth, if the latter has a perfect representation within the support of the prior, and under various dynamical assumptions, such as the data ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Recent work on the convergence of posterior distributions under Bayesian updating has established conditions under which the posterior will concentrate on the truth, if the latter has a perfect representation within the support of the prior, and under various dynamical assumptions, such as the data being independent and identically distributed or Markovian. Here I establish sufficient conditions for the convergence of the posterior distribution in nonparametric problems even when all of the hypotheses are wrong, and the datagenerating process has a complicated dependence structure. The main dynamical assumption is the generalized asymptotic equipartition (or “ShannonMcMillanBreiman”) property of information theory. I derive a kind of large deviations principle for the posterior measure, and discuss the advantages of predicting using a combination of models known to be wrong. An appendix sketches connections between the present results and the “replicator dynamics” of evolutionary theory.
DOI 10.1007/s1046300801682 Asymptotic properties of posterior distributions in nonparametric regression with nonGaussian errors
"... Abstract We investigate the asymptotic behavior of posterior distributions in nonparametric regression problems when the distribution of noise structure of the regression model is assumed to be nonGaussian but symmetric such as the Laplace distribution. Given prior distributions for the unknown reg ..."
Abstract
 Add to MetaCart
Abstract We investigate the asymptotic behavior of posterior distributions in nonparametric regression problems when the distribution of noise structure of the regression model is assumed to be nonGaussian but symmetric such as the Laplace distribution. Given prior distributions for the unknown regression function and the scale parameter of noise distribution, we show that the posterior distribution concentrates around the true values of parameters. Following the approach by Choi and Schervish (Journal of Multivariate Analysis, 98, 1969–1987, 2007) and extending their results, we prove consistency of the posterior distribution of the parameters for the nonparametric regression when errors are symmetric nonGaussian with suitable assumptions.
8 British Journal of Mathematical and Statistical Psychology (2013), 66, 8–38 © 2012 The British Psychological Society www.wileyonlinelibrary.com Philosophy and the practice of Bayesian statistics
"... A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually ..."
Abstract
 Add to MetaCart
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypotheticodeductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. 1. The usual story – which we don’t like In so far as I have a coherent philosophy of statistics, I hope it is ‘robust ’ enough to cope in principle with the whole of statistics, and sufficiently undogmatic not to imply that all those who may think rather differently from me are necessarily stupid. If at times I do seem dogmatic, it is because it is convenient to give my own views as unequivocally as possible. (Bartlett, 1967, p. 458) Schools of statistical inference are sometimes linked to approaches to the philosophy of science. ‘Classical ’ statistics – as exemplified by Fisher’s pvalues, Neyman–Pearson hypothesis tests, and Neyman’s confidence intervals – is associated with the hypotheticodeductive and falsificationist view of science. Scientists devise hypotheses, deduce implications for observations from them, and test those implications. Scientific hypotheses