Results 1  10
of
299
A rational analysis of the selection task as optimal data selection
 67 – 215535 Deliverable 4.1
, 1994
"... Human reasoning in hypothesistesting tasks like Wason's (1966, 1968) selection task has been depicted as prone to systematic biases. However, performance on this task has been assessed against a now outmoded falsificationist philosophy of science. Therefore, the experimental data is reassessed in t ..."
Abstract

Cited by 156 (8 self)
 Add to MetaCart
Human reasoning in hypothesistesting tasks like Wason's (1966, 1968) selection task has been depicted as prone to systematic biases. However, performance on this task has been assessed against a now outmoded falsificationist philosophy of science. Therefore, the experimental data is reassessed in the light of a Bayesian model of optimal data selection in inductive hypothesis testing. The model provides a rational analysis (Anderson, 1990) of the selection task that fits well with people's performance on both abstract and thematic versions of the task. The model suggests that reasoning in these tasks may be rational rather than subject to systematic bias. Over the past 30 years, results in the psychology of reasoning have raised doubts about human rationality. The assumption of human rationality has a long history. Aristotle took the capacity for rational thought to be the defining characteristic of human beings, the capacity that separated us from the animals. Descartes regarded the ability to use language and to reason as the hallmarks of the mental that separated it from the merely physical. Many contemporary philosophers of mind also appeal to a basic principle of rationality in accounting for everyday, folk psychological explanation whereby we explain each other's behavior in terms of our beliefs and desires (Cherniak, 1986; Cohen, 1981; Davidson, 1984; Dennett, 1987; but see Stich, 1990). These philosophers, both ancient and modern, share a common view of rationality: To be rational is to reason according to rules (Brown, 1989). Logic and mathematics provide the normative rules that tell us how we should reason. Rationality therefore seems to demand that the human cognitive system embodies the rules of logic and mathematics. However, results in the psychology of reasoning appear to show that people do not reason according to these rules. In both deductive (Evans, 1982, 1989;
Rationality For Economists?
 JOURNAL OF RISK AND UNCERTAINTY
, 1998
"... Rationality is a complex behavioral theory that can be parsed into statements about preferences, perceptions, and process. This paper looks at the evidence on rationality that is provided by behavioral experiments, and argues that most cognitive anomalies operate through errors in perception that a ..."
Abstract

Cited by 73 (5 self)
 Add to MetaCart
Rationality is a complex behavioral theory that can be parsed into statements about preferences, perceptions, and process. This paper looks at the evidence on rationality that is provided by behavioral experiments, and argues that most cognitive anomalies operate through errors in perception that arise from the way information is stored, retrieved, and processed, or through errors in process that lead to formulation of choice problems as cognitive tasks that are inconsistent at least with rationality narrowly defined. The paper discusses how these cognitive anomalies influence economic behavior and measurement, and their implications for economic analysis.
Betting on Theories
, 1993
"... Predictions about the future and unrestricted universal generalizations are never logically implied by our observational evidence, which is limited to particular facts in the present and past. Nevertheless, propositions of these and other kinds are often said to be confirmed by observational evidenc ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
Predictions about the future and unrestricted universal generalizations are never logically implied by our observational evidence, which is limited to particular facts in the present and past. Nevertheless, propositions of these and other kinds are often said to be confirmed by observational evidence. A natural place to begin the study of confirmation theory is to consider what it means to say that some evidence E confirms a hypothesis H. Incremental and absolute confirmation Let us say that E raises the probability of H if the probability of H given E is higher than the probability of H not given E. According to many confirmation theorists, “E confirms H ” means that E raises the probability of H. This conception of confirmation will be called incremental confirmation. Let us say that H is probable given E if the probability of H given E is above some threshold. (This threshold remains to be specified but is assumed to be at least one half.) According to some confirmation theorists, “E confirms H ” means that H is probable given E. This conception of confirmation will be called absolute confirmation. Confirmation theorists have sometimes failed to distinguish these two concepts. For example, Carl Hempel in his classic “Studies in the Logic of Confirmation ” endorsed the following principles: (1) A generalization of the form “All F are G ” is confirmed by the evidence that there is an individual that is both F and G. (2) A generalization of that form is also confirmed by the evidence that there is an individual that is neither F nor G. (3) The hypotheses confirmed by a piece of evidence are consistent with one another. (4) If E confirms H then E confirms every logical consequence of H. Principles (1) and (2) are not true of absolute confirmation. Observation of a single thing that is F and G cannot in general make it probable that all F are G; likewise for an individual that is neither
Random Worlds and Maximum Entropy
 In Proc. 7th IEEE Symp. on Logic in Computer Science
, 1994
"... Given a knowledge base KB containing firstorder and statistical facts, we consider a principled method, called the randomworlds method, for computing a degree of belief that some formula ' holds given KB . If we are reasoning about a world or system consisting of N individuals, then we can conside ..."
Abstract

Cited by 49 (12 self)
 Add to MetaCart
Given a knowledge base KB containing firstorder and statistical facts, we consider a principled method, called the randomworlds method, for computing a degree of belief that some formula ' holds given KB . If we are reasoning about a world or system consisting of N individuals, then we can consider all possible worlds, or firstorder models, with domain f1; : : : ; Ng that satisfy KB , and compute the fraction of them in which ' is true. We define the degree of belief to be the asymptotic value of this fraction as N grows large. We show that when the vocabulary underlying ' and KB uses constants and unary predicates only, we can naturally associate an entropy with each world. As N grows larger, there are many more worlds with higher entropy. Therefore, we can use a maximumentropy computation to compute the degree of belief. This result is in a similar spirit to previous work in physics and artificial intelligence, but is far more general. Of equal interest to the result itself are...
Rational explanation of the selection task
 Psychological Review
, 1996
"... M. Oaksford and N. Chater (O&C; 1994) presented the first quantitative model of P. C. Wason's ( 1966, 1968) selection task in.which performance is rational. J. St B T Evans and D. E. Over (1996) reply that O&C's account is normatively incorrect and cannot model K. N. Kirby's (1994b) or P. Pollard an ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
M. Oaksford and N. Chater (O&C; 1994) presented the first quantitative model of P. C. Wason's ( 1966, 1968) selection task in.which performance is rational. J. St B T Evans and D. E. Over (1996) reply that O&C's account is normatively incorrect and cannot model K. N. Kirby's (1994b) or P. Pollard and J. St B T Evans's (1983) data. It is argued that an equivalent measure satisfies their normative concerns and that a modification of O&C's model accounts for their empirical concerns. D. Laming (1996) argues that O&C made unjustifiable psychological assumptions and that a "correct" Bayesian analysis agrees with logic. It is argued that O&C's model makes normative and psychological sense and that Laming's analysis is not Bayesian. A. Almor and S. A. Sloman (1996) argue that O&C cannot explain their data. It is argued that Almor and Sloman's data do not bear on O&C's model because they alter the nature of the task. It is concluded that O&C's model remains the most compelling and comprehensive account of the selection task. Research on Wason's (1966, 1968) selection task questions human rationality because performance is not "logically correct?' Recently, Oaksford and Chater (O&C; 1994) provided a rational analysis (Anderson, 1990, 1991) of the selection task that appeared to vindicate human rationality. O&C argued that the selection task is an inductive, rather than a deductive, reasoning task: Participants must assess the truth or falsity of a general rule from specific instances. In particular, participants face a problem of optimal data selection (Lindley, 1956): They must decide which of four cards (p, notp, q, or notq) is likely to provide the most useful data to test a conditional rule,/fp then q. The "logical " solution is to select the p and the notq cards. O&C argued that this solution presupposes falsificationism (Popper, 1959), which argues that only data that can disconfirm, not confirm, hypotheses are of interest. In contrast, O&C's rational analysis uses a Bayesian approach to inductive
From Statistics to Beliefs
, 1992
"... An intelligent agent uses known facts, including statistical knowledge, to assign degrees of belief to assertions it is uncertain about. We investigate three principled techniques for doing this. All three are applications of the principle of indifference, because they assign equal degree of belief ..."
Abstract

Cited by 43 (12 self)
 Add to MetaCart
An intelligent agent uses known facts, including statistical knowledge, to assign degrees of belief to assertions it is uncertain about. We investigate three principled techniques for doing this. All three are applications of the principle of indifference, because they assign equal degree of belief to all basic "situations " consistent with the knowledge base. They differ because there are competing intuitions about what the basic situations are. Various natural patterns of reasoning, such as the preference for the most specific statistical data available, turn out to follow from some or all of the techniques. This is an improvement over earlier theories, such as work on direct inference and reference classes, which arbitrarily postulate these patterns without offering any deeper explanations or guarantees of consistency. The three methods we investigate have surprising characterizations: there are connections to the principle of maximum entropy, a principle of maximal independence, an...
Towards a unified theory of imprecise probability
 Int. J. Approx. Reasoning
, 2000
"... Belief functions, possibility measures and Choquet capacities of order 2, which are special kinds of coherent upper or lower probability, are amongst the most popular mathematical models for uncertainty and partial ignorance. I give examples to show that these models are not sufficiently general to ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
Belief functions, possibility measures and Choquet capacities of order 2, which are special kinds of coherent upper or lower probability, are amongst the most popular mathematical models for uncertainty and partial ignorance. I give examples to show that these models are not sufficiently general to represent some common types of uncertainty. Coherent lower previsions and sets of probability measures are considerably more general but they may not be sufficiently informative for some purposes. I discuss two other models for uncertainty, involving sets of desirable gambles and partial preference orderings. These are more informative and more general than the previous models, and they may provide a suitable mathematical setting for a unified theory of imprecise probability.
Choice Under Uncertainty with the Best and Worst in Mind: Neoadditive Capacities
 Journal of Economic Theory
, 2007
"... The concept of a nonextremeoutcomeadditive capacity(neoadditive capacity) is introduced. Neoadditive capacities model optimistic and pessimistic attitudes towards uncertainty as observed in many experimental studies. Moreover, neoadditive capacities can be applied easily in economic problems, ..."
Abstract

Cited by 35 (9 self)
 Add to MetaCart
The concept of a nonextremeoutcomeadditive capacity(neoadditive capacity) is introduced. Neoadditive capacities model optimistic and pessimistic attitudes towards uncertainty as observed in many experimental studies. Moreover, neoadditive capacities can be applied easily in economic problems, as we demonstrate by examples. This paper provides an axiomatisation of Choquet expected utility with neocapacities in a framework of purely subjective uncertainty. JEL Classification:
The plurality of Bayesian measures of confirmation and the problemof measure sensitivity
 Philosophy of Science 66 (Proceedings), S362–S378
, 1999
"... Contemporary Bayesian confirmation theorists measure degree of (incremental) confirmation using a variety of nonequivalent relevance measures. As a result, a great many of the arguments surrounding quantitative Bayesian confirmation theory are implicitly sensitive to choice of measure of confirmati ..."
Abstract

Cited by 32 (11 self)
 Add to MetaCart
Contemporary Bayesian confirmation theorists measure degree of (incremental) confirmation using a variety of nonequivalent relevance measures. As a result, a great many of the arguments surrounding quantitative Bayesian confirmation theory are implicitly sensitive to choice of measure of confirmation. Such arguments are enthymematic, since they tacitly presuppose that certain relevance measures should be used (for various purposes) rather than other relevance measures that have been proposed and defended in the philosophical literature. I present a survey of this pervasive class of Bayesian confirmationtheoretic enthymemes, and a brief analysis of some recent attempts to resolve the problem of measure sensitivity. 1 Preliminaries. 1.1 Terminology, Notation, and Basic Assumptions The present paper is concerned with the degree of incremental confirmation provided by evidential propositions E for hypotheses under test H, givenbackground knowledge K, according to relevance measures of degree of confirmation c. Wesaythatc is a relevance measure of degree of confirmation if and only if c satisfies the following constraints, in cases where E confirms, disconfirms, or is confirmationally irrelevant to H, given background knowledge K. 1