Results 1  10
of
28
Review of nonlinear mixedinteger and disjunctive programming techniques
 Optimization and Engineering
, 2002
"... This paper has as a major objective to present a unified overview and derivation of mixedinteger nonlinear programming (MINLP) techniques, Branch and Bound, OuterApproximation, Generalized Benders and Extended Cutting Plane methods, as applied to nonlinear discrete optimization problems that are ex ..."
Abstract

Cited by 55 (15 self)
 Add to MetaCart
This paper has as a major objective to present a unified overview and derivation of mixedinteger nonlinear programming (MINLP) techniques, Branch and Bound, OuterApproximation, Generalized Benders and Extended Cutting Plane methods, as applied to nonlinear discrete optimization problems that are expressed in algebraic form. The solution of MINLP problems with convex functions is presented first, followed by a brief discussion on extensions for the nonconvex case. The solution of logic based representations, known as generalized disjunctive programs, is also described. Theoretical properties are presented, and numerical comparisons on a small process network problem.
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
 SIAM Journal on Optimization
, 2004
"... A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for gene ..."
Abstract

Cited by 37 (8 self)
 Add to MetaCart
A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for general nonlinear constraints. In generalizing existing algorithms, new theoretical convergence results are presented that reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are required to apply the algorithm, a hierarchy of theoretical convergence results based on the Clarke calculus is given, in which local smoothness dictate what can be proved about certain limit points generated by the algorithm. To demonstrate the usefulness of the algorithm, the algorithm is applied to the design of a loadbearing thermal insulation system. We believe this is the first algorithm with provable convergence results to directly target this class of problems.
Global Optimization of MINLP Problems in Process Synthesis and Design
 Computers & Chemical Engineering
, 1997
"... : Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
: Two new methodologies for the global optimization of MINLP models, the Special structure Mixed Integer Nonlinear ffBB, SMINffBB, and the General structure Mixed Integer Nonlinear ffBB, GMINffBB, are presented. Their theoretical foundations provide guarantees that the global optimum solution of MINLPs involving twicedifferentiable nonconvex functions in the continuous variables can be identified. The conditions imposed on the functionality of the binary variables differ for each method : linear and mixed bilinear terms can be treated with the SMINffBB; mixed nonlinear terms whose continuous relaxation is twicedifferentiable are handled by the GMINffBB. While both algorithms use the concept of a branch & bound tree, they rely on fundamentally different bounding and branching strategies. In the GMINffBB algorithm, lower (upper) bounds at each node result from the solution of convex (nonconvex) MINLPs derived from the original problem. The construction of convex lower bound...
Global Optimization of MixedInteger Nonlinear Problems
 AIChE J
"... Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Two novel deterministic global optimization algorithms for nonconvex mixedinteger problems (MINLPs) are proposed, using the advances of the ffBB algorithm for nonconvex NLPs Adjiman et al. (1998a). The Special Structure MixedInteger ffBB algorithm (SMINffBB addresses problems with nonconvexities in the continuous variables and linear and mixedbilinear participation of the binary variables. The General Structure MixedInteger ffBB algorithm (GMINffBB), is applicable to a very general class of problems for which the continuous relaxation is twice continuously differentiable. Both algorithms are developed using the concepts of branchandbound, but they differ in their approach to each of the required steps. The SMINffBB algorithm is based on the convex underestimation of the continuous functions while the GMINffBB algorithm is centered around the convex relaxation of the entire problem. Both algorithms rely on optimization or interval based variable bound updates to enhance effici...
A Differential Evolution Approach for Global Optimization of MINLP
 Problems, Proceedings of 4 th Asia Pacific Conference on Simulated Evolution and Learning (SEAL2002
"... The global optimization of mixed integer nonlinear programming (MINLP) problems is an active research area in many engineering fields. In this work, Differential Evolution (DE), a hybrid Evolutionary Computation method, is used for the optimization of nonconvex MINLP problems and a comparison is ma ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
The global optimization of mixed integer nonlinear programming (MINLP) problems is an active research area in many engineering fields. In this work, Differential Evolution (DE), a hybrid Evolutionary Computation method, is used for the optimization of nonconvex MINLP problems and a comparison is made among the algorithms based on hybrid of Simplex & Simulated Annealing (MSIMPSA), Genetic Algorithms (GA), and DE. It is found that DE, an exceptionally simple evolutionary computation method, is significantly faster and yields the global optimum for a wide range of the key parameters. Results indicate that DE is more reliable, efficient and hence a better approach to the optimization of nonconvex nonlinear problems. DE found to be the best evolutionary computation method in all the problems studied.
Algorithms and software for convex mixed integer nonlinear programs, IMA Volumes
"... Abstract. This paper provides a survey of recent progress and software for solving convex mixed integer nonlinear programs (MINLP)s, where the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Abstract. This paper provides a survey of recent progress and software for solving convex mixed integer nonlinear programs (MINLP)s, where the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in recent years. By exploiting analogies to wellknown techniques for solving mixed integer linear programs and incorporating these techniques into software, significant improvements have been made in the ability to solve these problems. Key words. Mixed Integer Nonlinear Programming; Branch and Bound; AMS(MOS) subject classifications.
Barttfeld M, “Optimal synthesis of complex distillation columns using rigorous models”, Computers and Chemical Engineering 29
 1203–1215, 2005. 32 Grossmann I.E. and Ruiz J.P., "Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization," IMA Volume 154, Mixed Integer Nonlinear Programming (eds., Jon Lee and Sven Leyffer
, 2011
"... The synthesis of complex distillation columns has remained a major challenge since the pioneering work by Sargent and Gaminibanadara that was reported in 1976. In this paper we first provide a review of recent work for the optimal design of distillation of individual columns using traybytray model ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
The synthesis of complex distillation columns has remained a major challenge since the pioneering work by Sargent and Gaminibanadara that was reported in 1976. In this paper we first provide a review of recent work for the optimal design of distillation of individual columns using traybytray models. We examine the impact of different representations and models, NLP, MINLP and GDP, as well as the importance of appropriate initialization schemes. We next provide a review of the synthesis of complex column configurations for zeotropic mixtures and discuss different superstructure representations as well as decomposition schemes for tackling these problems. Finally, we briefly discuss extensions for handling azeotropic mixtures, reactive distillation columns and integration in process flowsheets. Numerical examples are presented to demonstrate that effective computational strategies are emerging that are based on disjunctive programming models that are coupled with thermodynamic initialization models and integrated through hierarchical decomposition techniques. 1.
Global Optimization of Nonconvex Nonlinear Programs Using Parallel Branch and Bound
, 1995
"... A branch and bound algorithm for computing globally optimal solutions to nonconvex nonlinear programs in continuous variables is presented. The algorithm is directly suitable for a wide class of problems arising in chemical engineering design. It can solve problems defined using algebraic functions ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
A branch and bound algorithm for computing globally optimal solutions to nonconvex nonlinear programs in continuous variables is presented. The algorithm is directly suitable for a wide class of problems arising in chemical engineering design. It can solve problems defined using algebraic functions and twice differentiable transcendental functions, in which finite upper and lower bounds can be placed on each variable. The algorithm uses rectangular partitions of the variable domain and a new bounding program based on convex/concave envelopes and positive definite combinations of quadratic terms. The algorithm is deterministic and obtains convergence with final regions of finite size. The partitioning strategy uses a sensitivity analysis of the bounding program to predict the best variable to split and the split location. Two versions of the algorithm are considered, the first using a local NLP algorithm (MINOS) and the second using a sequence of lower bounding programs in the search fo...
MixedInteger Nonlinear Optimization in Process Synthesis
, 1998
"... The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw ma ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The use of networks allows the representation of a variety of important engineering problems. The treatment of a particular class of network applications, the process synthesis problem, is exposed in this paper. Process Synthesis seeks to develop systematically process flowsheets that convert raw materials into desired products. In recent years, the optimization approach to process synthesis has shown promise in tackling this challenge. It requires the development of a network of interconnected units, the process superstructure, that represents the alternative process flowsheets. The mathematical modeling of the superstructure has a mixed set of binary and continuous variables and results in a mixedinteger optimization model. Due to the nonlinearity of chemical models, these problems are generally classified as MixedInteger Nonlinear Programming (MINLP) problems. A number of local optimization algorithms, developed for the solution of this class of problems, are presented in this pap...
Discrete Optimization Methods and their Role in the Integration of Planning and Scheduling
 AICHE SYMPSIUM SERIES
, 2002
"... The need for improvement in process operations, logistics and supply chain management has created a great demand for the development of optimization models for planning and scheduling. In this paper we first review the major classes of planning and scheduling models that arise in process operations, ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The need for improvement in process operations, logistics and supply chain management has created a great demand for the development of optimization models for planning and scheduling. In this paper we first review the major classes of planning and scheduling models that arise in process operations, and establish the underlying mathematical structure of these problems. As will be shown, the nature of these models is greatly affected by the time representation (discrete or continuous), and is often dominated by discrete decisions. We then briefly review the major recent developments in mixedinteger linear and nonlinear programming, disjunctive programming and constraint programming, as well as general decomposition techniques for solving these problems. We present a general formulation for integrating planning and scheduling to illustrate the models and methods discussed in this paper.