Results 1 
6 of
6
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 913 (38 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1
A Tutorial on Learning Bayesian Networks
 Communications of the ACM
, 1995
"... We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by c ..."
Abstract

Cited by 299 (13 self)
 Add to MetaCart
We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by combining domain knowledge with statistical data. 1 Introduction Many techniques for learning rely heavily on data. In contrast, the knowledge encoded in expert systems usually comes solely from an expert. In this paper, we examine a knowledge representation, called a Bayesian network, that lets us have the best of both worlds. Namely, the representation allows us to learn new knowledge by combining expert domain knowledge and statistical data. A Bayesian network is a graphical representation of uncertain knowledge that most people find easy to construct and interpret. In addition, the representation has formal probabilistic semantics, making it suitable for statistical manipulation (Howard,...
A Bayesian Approach to Causal Discovery
, 1997
"... We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that t ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraintbased approach uses categorical information about conditionalindependence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraintbased counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structuresboth quantitative and qualitativecan be made. Three, information from several models can be combined to make better inferences and to better ...
Likelihoods and Parameter Priors for Bayesian Networks
, 1995
"... We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesiannetwork s ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesiannetwork structures from a small set of assessments. The most notable assumption is that of likelihood equivalence, which says that data can not help to discriminate network structures that encode the same assertions of conditional independence. We describe the constructions that follow from these assumptions, and also present a method for directly computing the marginal likelihood of a random sample with no missing observations. Also, we show how these assumptions lead to a general framework for characterizing parameter priors of multivariate distributions. Keywords: Bayesian network, learning, likelihood equivalence, Dirichlet, normalWishart. 1 Introduction A Bayesian network is a graphical repres...
unknown title
"... Abstract. A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, ..."
Abstract
 Add to MetaCart
Abstract. A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, it readily handles situations where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequences of intervention. Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical methods in conjunction with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data. In this paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarize Bayesian statistical methods for using data to improve these models. With regard to the latter task, we describe methods for learning both the parameters and structure of a Bayesian network, including techniques for learning with incomplete data. In addition, we relate