Results 1  10
of
73
Least Squares Conformal Maps for Automatic Texture Atlas Generation
, 2002
"... A Texture Atlas is an efficient color representation for 3D Paint Systems. The model to be textured is decomposed into charts homeomorphic to discs, each chart is parameterized, and the unfolded charts are packed in texture space. Existing texture atlas methods for triangulated surfaces suffer from ..."
Abstract

Cited by 246 (6 self)
 Add to MetaCart
A Texture Atlas is an efficient color representation for 3D Paint Systems. The model to be textured is decomposed into charts homeomorphic to discs, each chart is parameterized, and the unfolded charts are packed in texture space. Existing texture atlas methods for triangulated surfaces suffer from several limitations, requiring them to generate a large number of small charts with simple borders. The discontinuities between the charts cause artifacts, and make it difficult to paint large areas with regular patterns.
Multiresolution Signal Processing for Meshes
, 1999
"... We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes wh ..."
Abstract

Cited by 212 (12 self)
 Add to MetaCart
We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes whose weights depend only on connectivity. This is combined with known mesh simplification methods to build subdivision and pyramid algorithms. We demonstrate the power of these algorithms through a number of application examples including smoothing, enhancement, editing, and texture mapping.
Texture mapping progressive meshes
, 2001
"... Given an arbitrary mesh, we present a method to construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. Our method considers two important goals simultaneously. It minimizes texture stretch (small texture distances mapped onto large surface d ..."
Abstract

Cited by 209 (6 self)
 Add to MetaCart
Given an arbitrary mesh, we present a method to construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. Our method considers two important goals simultaneously. It minimizes texture stretch (small texture distances mapped onto large surface distances) to balance sampling rates over all locations and directions on the surface. It also minimizes texture deviation (“slippage ” error based on parametric correspondence) to obtain accurate textured mesh approximations. The method begins by partitioning the mesh into charts using planarity and compactness heuristics. It creates a stretchminimizing parametrization within each chart, and resizes the charts based on the resulting stretch. Next, it simplifies the mesh while respecting the chart boundaries. The parametrization is reoptimized to reduce both stretch and deviation over the whole PM sequence. Finally, the charts are packed into a texture atlas. We demonstrate using such atlases to sample color and normal maps over several models. Additional Keywords: mesh simplification, surface flattening, surface parametrization, texture stretch.
Surface Parameterization: a Tutorial and Survey
 In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization
, 2005
"... Summary. This paper provides a tutorial and survey of methods for parameterizing surfaces with a view to applications in geometric modelling and computer graphics. We gather various concepts from differential geometry which are relevant to surface mapping and use them to understand the strengths and ..."
Abstract

Cited by 169 (4 self)
 Add to MetaCart
Summary. This paper provides a tutorial and survey of methods for parameterizing surfaces with a view to applications in geometric modelling and computer graphics. We gather various concepts from differential geometry which are relevant to surface mapping and use them to understand the strengths and weaknesses of the many methods for parameterizing piecewise linear surfaces and their relationship to one another. 1
Intrinsic Parameterizations of Surface Meshes
, 2002
"... Parameterization of discrete surfaces is a fundamental and widelyused operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute leastdistorted para ..."
Abstract

Cited by 164 (12 self)
 Add to MetaCart
Parameterization of discrete surfaces is a fundamental and widelyused operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute leastdistorted parameterizations of large meshes. In this paper, we present new theoretical and practical results on the parameterization of triangulated surface patches.
Lapped Textures
 Proceedings of SIGGRAPH 2000, Computer Graphics, Annual Conference Series
"... Figure 1: Four different textures pasted on the bunny model. The last picture illustrates changing local orientation and scale on the body. We present a method for creating texture over an arbitrary surface mesh using an example 2D texture. The approach is to identify interesting regions (texture pa ..."
Abstract

Cited by 150 (7 self)
 Add to MetaCart
Figure 1: Four different textures pasted on the bunny model. The last picture illustrates changing local orientation and scale on the body. We present a method for creating texture over an arbitrary surface mesh using an example 2D texture. The approach is to identify interesting regions (texture patches) in the 2D example, and to repeatedly paste them onto the surface until it is completely covered. We call such a collection of overlapping patches a lapped texture. It is rendered using compositing operations, either into a traditional global texture map during a preprocess, or directly with the surface at runtime. The runtime compositing approach avoids resampling artifacts and drastically reduces texture memory requirements. Through a simple interface, the user specifies a tangential vector field over the surface, providing local control over the texture scale, and for anisotropic textures, the orientation. To paste a texture patch onto the surface, a surface patch is grown and parametrized over texture space. Specifically, we optimize the parametrization of each surface patch such that the tangential vector field aligns everywhere with the standard frame of the texture patch. We show that this optimization is solved efficiently as a sparse linear system.
Texture Synthesis on Surfaces
 ACM SIGGRAOH 2001
, 2001
"... Many natural and manmade surface patterns are created by interactions between texture elements and surface geometry. We believe that the best way to create such patterns is to synthesize a texture directly on the surface of the model. Given a texture sample in the form of an image, we create a simi ..."
Abstract

Cited by 149 (5 self)
 Add to MetaCart
Many natural and manmade surface patterns are created by interactions between texture elements and surface geometry. We believe that the best way to create such patterns is to synthesize a texture directly on the surface of the model. Given a texture sample in the form of an image, we create a similar texture over an irregular mesh hierarchy that has been placed on a given surface. Our method draws upon texture synthesis methods that use image pyramids, and we use a mesh hierarchy to serve in place of such pyramids. First, we create a hierarchy of points from low to high density over a given surface, and we connect these points to form a hierarchy of meshes. Next, the user specifies a vector field over the surface that indicates the orientation of the texture. The mesh vertices on the surface are then sorted in such a way that visiting the points in order will follow the vector field and will sweep across the surface from one end to the other. Each point is then visited in turn to determine its color. The color of a particular point is found by examining the color of neighboring points and finding the best match to a similar pixel neighborhood in the given texture sample. The color assignment is done in a coarsetofine manner using the mesh hierarchy. A texture created this way fits the surface naturally and seamlessly.
Texture Synthesis over Arbitrary Manifold Surfaces
, 2001
"... Algorithms exist for synthesizing a wide variety of textures over rectangular domains. However, it remains difficult to synthesize general textures over arbitrary manifold surfaces. In this paper, we present a solution to this problem for surfaces defined by dense polygon meshes. Our solution extend ..."
Abstract

Cited by 137 (8 self)
 Add to MetaCart
Algorithms exist for synthesizing a wide variety of textures over rectangular domains. However, it remains difficult to synthesize general textures over arbitrary manifold surfaces. In this paper, we present a solution to this problem for surfaces defined by dense polygon meshes. Our solution extends Wei and Levoy's texture synthesis method [25] by generalizing their definition of search neighborhoods. For each mesh vertex, we establish a local parameterization surrounding the vertex, use this parameterization to create a small rectangular neighborhood with the vertex at its center, and search a sample texture for similar neighborhoods. Our algorithm requires as input only a sample texture and a target model. Notably, it does not require specification of a global tangent vector field; it computes one as it goes  either randomly or via a relaxation process. Despite this, the synthesized texture contains no discontinuities, exhibits low distortion, and is perceived to be similar to the sample texture. We demonstrate that our solution is robust and is applicable to a wide range of textures. Keywords: Texture Synthesis, Texture Mapping, Curves & Surfaces 1
Global Conformal Surface Parameterization
, 2003
"... We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies. The parameterization is global in the sense that it preserves the conformality everywhere except for a few points, and has no boundary of discontinuity. We analyze the structure of the space ..."
Abstract

Cited by 112 (22 self)
 Add to MetaCart
We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies. The parameterization is global in the sense that it preserves the conformality everywhere except for a few points, and has no boundary of discontinuity. We analyze the structure of the space of all global conformal parameterizations of a given surface and find all possible solutions by constructing a basis of the underlying linear solution space. This space has a natural structure solely determined by the surface geometry, so our computing result is independent of connectivity, insensitive to resolution, and independent of the algorithms to discover it. Our algorithm is based on the properties of gradient fields of conformal maps, which are closedness, harmonity, conjugacy, duality and symmetry. These properties can be formulated by sparse linear systems, so the method is easy to implement and the entire process is automatic. We also introduce a novel topological modification method to improve the uniformity of the parameterization. Based on the global conformal parameterization of a surface, we can construct a conformal atlas and use it to build conformal geometry images which have very accurate reconstructed normals.
Normal Meshes
, 2000
"... Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approxi ..."
Abstract

Cited by 112 (8 self)
 Add to MetaCart
Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approximate any surface arbitrarily closely with a normal semiregular mesh. Normal meshes can be useful in numerous applications such as compression, filtering, rendering, texturing, and modeling.