Results 1 
6 of
6
Comparing approaches to the exploration of the domain of residue classes
 ARTICLE SUBMITTED TO JOURNAL OF SYMBOLIC COMPUTATION
, 2002
"... We report on a case study on combining proof planning with computer algebra systems. We construct proofs for basic algebraic properties of residue classes as well as for isomorphisms between residue classes using different proof techniques, which are implemented as strategies in a multistrategy ..."
Abstract

Cited by 25 (13 self)
 Add to MetaCart
We report on a case study on combining proof planning with computer algebra systems. We construct proofs for basic algebraic properties of residue classes as well as for isomorphisms between residue classes using different proof techniques, which are implemented as strategies in a multistrategy proof planner. The search space of the proof planner can be drastically reduced by employing computations of two computer algebra systems during the planning process. To test the eectiveness of our approach we carried out a large number of experiments and also compared it with some alternative approaches. In particular, we experimented with substituting computer algebra by model generation and by proving theorems with a first order equational theorem prover instead of a proof planner.
On Using Ground Joinable Equations in Equational Theorem Proving
 PROC. OF THE 3RD FTP, ST. ANDREWS, SCOTTLAND, FACHBERICHTE INFORMATIK. UNIVERSITAT KOBLENZLANDAU
, 2000
"... When rewriting and completion techniques are used for equational theorem proving, the axiom set is saturated with the aim to get a rewrite system that is terminating and confluent on ground terms. To reduce the computational effort it should (1) be powerful for rewriting and (2) create not too ma ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
When rewriting and completion techniques are used for equational theorem proving, the axiom set is saturated with the aim to get a rewrite system that is terminating and confluent on ground terms. To reduce the computational effort it should (1) be powerful for rewriting and (2) create not too many critical pairs. These problems become especially important if some operators are associative and commutative (AC ). We show in this paper how these two goals can be reached to some extent by using ground joinable equations for simplification purposes and omitting them from the generation of new facts. For the special case of AC operators we present a simple redundancy criterion which is easy to implement, efficient, and effective in practice, leading to significant speedups.
ΩMEGA: Computer supported mathematics
 IN: PROCEEDINGS OF THE 27TH GERMAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (KI 2004)
, 2004
"... The year 2004 marks the fiftieth birthday of the first computer generated proof of a mathematical theorem: “the sum of two even numbers is again an even number” (with Martin Davis’ implementation of Presburger Arithmetic in 1954). While Martin Davis and later the research community of automated dedu ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
The year 2004 marks the fiftieth birthday of the first computer generated proof of a mathematical theorem: “the sum of two even numbers is again an even number” (with Martin Davis’ implementation of Presburger Arithmetic in 1954). While Martin Davis and later the research community of automated deduction used machine oriented calculi to find the proof for a theorem by automatic means, the Automath project of N.G. de Bruijn – more modest in its aims with respect to automation – showed in the late 1960s and early 70s that a complete mathematical textbook could be coded and proofchecked by a computer. Classical theorem proving procedures of today are based on ingenious search techniques to find a proof for a given theorem in very large search spaces – often in the range of several billion clauses. But in spite of many successful attempts to prove even open mathematical problems automatically, their use in everyday mathematical practice is still limited. The shift
Systems for Integrated . . .  Interim Report of the CALCULEMUS Network.
"... This document reports on the research progress made in all work task of the CALCULEMUS IHP Training Network HPRNCT200000102 after the first half of the 48 months funding period. The objectives of the CALCULEMUS Network are: 1. outline the design of a new generation of mathematical software system ..."
Abstract
 Add to MetaCart
This document reports on the research progress made in all work task of the CALCULEMUS IHP Training Network HPRNCT200000102 after the first half of the 48 months funding period. The objectives of the CALCULEMUS Network are: 1. outline the design of a new generation of mathematical software systems and computeraided verification tools; 2. the training of young researchers in the broad field of mechanical reasoning and formal methods; 3. the dissemination of the results both in industry and in academia; and 4. the crossfertilisation and amalgamation of the automated theorem proving (ATP/DS), computer algebra (CAS), term rewriting systems (TRS) interactive proof development systems (ITP) and software
The Proof Planners of \Omega mega:
, 2004
"... TIK D66123 SAARBRU"CKEN GERMANYWWW: ..."
(Show Context)