Results 1 
3 of
3
Nominal Logic: A First Order Theory of Names and Binding
 Information and Computation
, 2001
"... This paper formalises within firstorder logic some common practices in computer science to do with representing and reasoning about syntactical structures involving named bound variables (as opposed to nameless terms, explicit substitutions, or higher order abstract syntax). It introduces Nominal L ..."
Abstract

Cited by 165 (15 self)
 Add to MetaCart
This paper formalises within firstorder logic some common practices in computer science to do with representing and reasoning about syntactical structures involving named bound variables (as opposed to nameless terms, explicit substitutions, or higher order abstract syntax). It introduces Nominal Logic, a version of firstorder manysorted logic with equality containing primitives for renaming via nameswapping and for freshness of names, from which a notion of binding can be derived. Its axioms express...
Theorem Proving Modulo
 Journal of Automated Reasoning
"... Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first ..."
Abstract

Cited by 78 (14 self)
 Add to MetaCart
Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first contribution of this paper is to define a sequent calculus modulo that gives a proof theoretic account of the combination of computations and deductions. The congruence on propositions is handled via rewrite rules and equational axioms. Rewrite rules apply to terms and also directly to atomic propositions. The second contribution is to give a complete proof search method, called Extended Narrowing and Resolution (ENAR), for theorem proving modulo such congruences. The completeness of this method is proved with respect to provability in sequent calculus modulo. An important application is that higherorder logic can be presented as a theory modulo. Applying the Extended Narrowing and Resolution method to this presentation of higherorder logic subsumes full higherorder resolution.
Binding logic: Proofs and models
 In: LPAR ’02: Proceedings of the 9th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
, 2002
"... We define an extension of predicate logic, called Binding Logic, where variables can be bound in terms and in propositions. We introduce a notion of model for this logic and prove a soundness and completeness theorem for it. This theorem is obtained by encoding this logic back into predicate logic a ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We define an extension of predicate logic, called Binding Logic, where variables can be bound in terms and in propositions. We introduce a notion of model for this logic and prove a soundness and completeness theorem for it. This theorem is obtained by encoding this logic back into predicate logic and using the classical soundness and completeness theorem there.