Results 1  10
of
224
Expected stock returns and volatility
 Journal of Financial Economics
, 1987
"... This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evid ..."
Abstract

Cited by 337 (8 self)
 Add to MetaCart
This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evidence that unexpected stock market returns are negatively related to the unexpected change in the volatility of stock returns. This negative relation provides indirect evidence of a positive relation between expected risk premiums and volatility. 1.
Investing for the long run when returns are predictable
 Journal of Finance
, 2000
"... We examine how the evidence of predictability in asset returns affects optimal portfolio choice for investors with long horizons. Particular attention is paid to estimation risk, or uncertainty about the true values of model parameters. We find that even after incorporating parameter uncertainty, th ..."
Abstract

Cited by 283 (0 self)
 Add to MetaCart
We examine how the evidence of predictability in asset returns affects optimal portfolio choice for investors with long horizons. Particular attention is paid to estimation risk, or uncertainty about the true values of model parameters. We find that even after incorporating parameter uncertainty, there is enough predictability in returns to make investors allocate substantially more to stocks, the longer their horizon. Moreover, the weak statistical significance of the evidence for predictability makes it important to take estimation risk into account; a longhorizon investor who ignores it may overallocate to stocks by a sizeable amount. ONE OF THE MORE STRIKING EMPIRICAL FINDINGS in recent financial research is the evidence of predictability in asset returns. 1 In this paper we examine the implications of this predictability for an investor seeking to make sensible portfolio allocation decisions. We approach this question from the perspective of horizon effects: Given the evidence of predictability in returns, should a longhorizon investor allocate his wealth differently from a shorthorizon investor? The motivation for thinking about the problem in these terms is the classic work of Samuelson ~1969! and Merton ~1969!. They show that if asset returns are i.i.d., an investor with power utility who rebalances his portfolio optimally should choose the same asset allocation, regardless of investment horizon. In light of the growing body of evidence that returns are predictable, the investor’s horizon may no longer be irrelevant. The extent to which the horizon does play a role serves as an interesting and convenient way of thinking about how predictability affects portfolio choice. Moreover, the results may shed light on the common but controversial advice that investors with long horizons should allocate more heavily to stocks. 2
Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk
 THE JOURNAL OF FINANCE • VOL. LVI
, 2001
"... This paper uses a disaggregated approach to study the volatility of common stocks at the market, industry, and firm levels. Over the period 1962–1997 there has been a noticeable increase in firmlevel volatility relative to market volatility. Accordingly, correlations among individual stocks and the ..."
Abstract

Cited by 270 (13 self)
 Add to MetaCart
This paper uses a disaggregated approach to study the volatility of common stocks at the market, industry, and firm levels. Over the period 1962–1997 there has been a noticeable increase in firmlevel volatility relative to market volatility. Accordingly, correlations among individual stocks and the explanatory power of the market model for a typical stock have declined, whereas the number of stocks needed to achieve a given level of diversification has increased. All the volatility measures move together countercyclically and help to predict GDP growth. Market volatility tends to lead the other volatility series. Factors that may be responsible for these findings are suggested.
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 265 (34 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the longrun dynamics of realized logarithmic volatilities are well approximated by a fractionallyintegrated longmemory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated highfrequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormalnormal mixture forecast distribution provides conditionally wellcalibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitragefree multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from highfrequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
The World Price of Covariance Risk
 Journal of Finance
, 1991
"... In a financially integrated global market, the conditionally expected return on a portfolio of securities from a particular country is determined by the country's world risk exposure. This paper measures the conditional risk of 17 countries. The reward per unit of risk is the world price of covarian ..."
Abstract

Cited by 164 (17 self)
 Add to MetaCart
In a financially integrated global market, the conditionally expected return on a portfolio of securities from a particular country is determined by the country's world risk exposure. This paper measures the conditional risk of 17 countries. The reward per unit of risk is the world price of covariance risk. Although the tests provide evidence on the conditional mean variance efficiency of the benchmark portfolio, the results show that countries' risk exposures help explain differences in performance. Evidence is also presented which indicates that these risk exposures change through time and that the world price of covariance risk is not constant.
Asset pricing at the millennium
 Journal of Finance
"... This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior of the term structure of real interest rates restricts the conditional mean of the SDF, whereas patterns of risk premia restrict its conditional volatility and factor structure. Stylized facts about interest rates, aggregate stock prices, and crosssectional patterns in stock returns have stimulated new research on optimal portfolio choice, intertemporal equilibrium models, and behavioral finance. This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work. Theorists develop models with testable predictions; empirical researchers document “puzzles”—stylized facts that fail to fit established theories—and this stimulates the development of new theories. Such a process is part of the normal development of any science. Asset pricing, like the rest of economics, faces the special challenge that data are generated naturally rather than experimentally, and so researchers cannot control the quantity of data or the random shocks that affect the data. A particularly interesting characteristic of the asset pricing field is that these random shocks are also the subject matter of the theory. As Campbell, Lo, and MacKinlay ~1997, Chap. 1, p. 3! put it: What distinguishes financial economics is the central role that uncertainty plays in both financial theory and its empirical implementation. The starting point for every financial model is the uncertainty facing investors, and the substance of every financial model involves the impact of uncertainty on the behavior of investors and, ultimately, on mar* Department of Economics, Harvard University, Cambridge, Massachusetts
Rangebased estimation of stochastic volatility models
, 2002
"... We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian qu ..."
Abstract

Cited by 114 (11 self)
 Add to MetaCart
We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian quasimaximum likelihood estimation produces highly efficient estimates of stochastic volatility models and extractions of latent volatility. We use our method to examine the dynamics of daily exchange rate volatility and find the evidence points strongly toward twofactor models with one highly persistent factor and one quickly meanreverting factor. VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio choice, or risk management. Not long ago, theoretical models routinely assumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!. Today, however, we widely acknowledge that volatility is both time varying and predictable ~e.g., Andersen and Bollerslev ~1997!!, andstochastic volatility models are commonplace. Discrete and continuoustime stochastic volatility models are extensively used in theoretical finance, empirical finance, and financial econometrics, both in academe and industry ~e.g., Hull and
Recovering Risk Aversion from Option Prices and Realized Returns. Manuscript
, 1998
"... A relationship exists between aggregate riskneutral and subjective probability distributions and risk aversion functions. Using a variation of the method developed by Jackwerth and Rubinstein (1996), we estimate riskneutral probabilities reliably from option prices. Subjective probabilities are es ..."
Abstract

Cited by 104 (3 self)
 Add to MetaCart
A relationship exists between aggregate riskneutral and subjective probability distributions and risk aversion functions. Using a variation of the method developed by Jackwerth and Rubinstein (1996), we estimate riskneutral probabilities reliably from option prices. Subjective probabilities are estimated from realized returns. This paper then introduces a technique to empirically derive risk aversion functions implied by option prices and realized returns simultaneously. These risk aversion functions dramatically change shapes around the 1987 crash: Precrash, they are positive and decreasing in wealth and thus consistent with standard economic theory. Postcrash, they are partially negative and increasing and irreconcilable with the theory. Overpricing of outofthemoney puts is the most likely cause. A simulated trading strategy exploiting this overpricing shows excess returns even after accounting for the possibility of further crashes and transaction costs. * Jens Carsten Jackwerth is a visiting assistant professor at the London Business School. For helpful discussions I
How often to sample a continuoustime process in the presence of market microstructure noise
 Review of Financial Studies
, 2005
"... In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When market microstructure noise is present but unaccounted for, however, we show that the optimal sampling frequency is finite and derives its closedform expression. But even with optimal sampling, usi ..."
Abstract

Cited by 86 (13 self)
 Add to MetaCart
In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When market microstructure noise is present but unaccounted for, however, we show that the optimal sampling frequency is finite and derives its closedform expression. But even with optimal sampling, using say 5min returns when transactions are recorded every second, a vast amount of data is discarded, in contradiction to basic statistical principles. We demonstrate that modeling the noise and using all the data is a better solution, even if one misspecifies the noise distribution. So the answer is: sample as often as possible. Over the past few years, price data sampled at very high frequency have become increasingly available in the form of the Olsen dataset of currency exchange rates or the TAQ database of NYSE stocks. If such data were not affected by market microstructure noise, the realized volatility of the process (i.e., the average sum of squares of logreturns sampled at high frequency) would estimate the returns ’ variance, as is well known. In fact, sampling as often as possible would theoretically produce in the limit a perfect estimate of that variance. We start by asking whether it remains optimal to sample the price process at very high frequency in the presence of market microstructure noise, consistently with the basic statistical principle that, ceteris paribus, more data are preferred to less. We first show that, if noise is present but unaccounted for, then the optimal sampling frequency is finite, and we We are grateful for comments and suggestions from the editor, Maureen O’Hara, and two anonymous