Results 1  10
of
149
The JumpRisk Premia Implicit in Options: Evidence from an Integrated TimeSeries Study
 Journal of Financial Economics
"... Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more promi ..."
Abstract

Cited by 210 (1 self)
 Add to MetaCart
Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more prominent during volatile markets. This form of jumprisk premia is important not only in reconciling the dynamics implied by the joint data, but also in explaining the volatility “smirks” of crosssectional options data.
Nonparametric Estimation of StatePrice Densities Implicit In Financial Asset Prices
 JOURNAL OF FINANCE
, 1997
"... Implicit in the prices of traded financial assets are ArrowDebreu prices or, with continuous states, the stateprice density (SPD). We construct a nonparametric estimator for the SPD implicit in option prices and derive its asymptotic sampling theory. This estimator provides an arbitragefree metho ..."
Abstract

Cited by 192 (3 self)
 Add to MetaCart
Implicit in the prices of traded financial assets are ArrowDebreu prices or, with continuous states, the stateprice density (SPD). We construct a nonparametric estimator for the SPD implicit in option prices and derive its asymptotic sampling theory. This estimator provides an arbitragefree method of pricing new, complex, or illiquid securities while capturing those features of the data that are most relevant from an assetpricing perspective, e.g., negative skewness and excess kurtosis for asset returns, volatility "smiles" for option prices. We perform Monte Carlo experiments and extract the SPD from actual S&P 500 option prices.
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 134 (10 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 97 (2 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
TimeChanged Lévy Processes and Option Pricing
, 2002
"... As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return ..."
Abstract

Cited by 89 (12 self)
 Add to MetaCart
As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. We propose that timechanged Lévy processes be used to simultaneously address these three facets of the underlying asset return process. We show that our framework encompasses almost all of the models proposed in the option pricing literature. Despite the generality of our approach, we show that it is straightforward to select and test a particular option pricing model through the use of characteristic function technology.
The CrossSection of Volatility and Expected Returns
 Journal of Finance
, 2006
"... We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF. ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF.
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
Expected Option Returns
 Journal of Finance
, 2001
"... This paper examines expected option returns in the context of mainstream asset pricing theory. Under mild assumptions, expected call returns exceed those of the underlying security and increase with the strike price. Likewise, expected put returns are below the riskfree rate and increase with the s ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
This paper examines expected option returns in the context of mainstream asset pricing theory. Under mild assumptions, expected call returns exceed those of the underlying security and increase with the strike price. Likewise, expected put returns are below the riskfree rate and increase with the strike price. S&P index option returns consistently exhibit these characteristics. Under stronger assumptions, expected option returns vary linearly with option betas. However, zerobeta, atthemoney straddle positions produce average losses of approximately three percent per week. This suggests that some additional factor, such as systematic stochastic volatility, is priced in option returns.
Separating microstructure noise from volatility
, 2006
"... There are two variance components embedded in the returns constructed using high frequency asset prices: the timevarying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moment ..."
Abstract

Cited by 64 (5 self)
 Add to MetaCart
There are two variance components embedded in the returns constructed using high frequency asset prices: the timevarying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatilitytiming trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.