Results 1  10
of
40
Observability and Controllability of Piecewise Affine and Hybrid Systems
 IEEE Transactions on Automatic Control
, 1999
"... In this pap e we prove in a constructive way, the ee ale b e we e pie a#ne syste and a broad class of hybridsyste de e d by inte line dynamics, automata, and propositional logic. By focusing our inveon the forme class, we show through countethat obse ability and controllability prope rtie cannot b ..."
Abstract

Cited by 140 (21 self)
 Add to MetaCart
(Show Context)
In this pap e we prove in a constructive way, the ee ale b e we e pie a#ne syste and a broad class of hybridsyste de e d by inte line dynamics, automata, and propositional logic. By focusing our inveon the forme class, we show through countethat obse ability and controllability prope rtie cannot be e asilydely from those of the comp tline subsyste Inste we propose practical nume te base onmixe te line programming. Keywords Hybrid syste controllability,obse ability, pie line syste pie a#ne syste mixe teline programming I. Introducti In recent yearsb oth control and computer science haveb een attractedb y hybridsystem [1], [2], [23], [25], [26],b ecause they provide a unified framework fordescribgARB( cesses evolving accordingto continuous dynamics, discrete dynamics, and logic rules. The interest is mainly motivatedb y the large variety of practical situations, for instance realtime systems, where physical processes interact with digital controllers. Several modelingformalisms h...
Effective Synthesis of Switching Controllers for Linear Systems
, 2000
"... In this work we suggest a novel methodology for synthesizing switching controllers for continuous and hybrid systems whose dynamics are defined by linear differential equations. We formulate the synthesis problem as finding the conditions upon which a controller should switch the behavior of the sys ..."
Abstract

Cited by 108 (8 self)
 Add to MetaCart
In this work we suggest a novel methodology for synthesizing switching controllers for continuous and hybrid systems whose dynamics are defined by linear differential equations. We formulate the synthesis problem as finding the conditions upon which a controller should switch the behavior of the system from one "mode" to another in order to avoid a set of bad states, and propose an abstract algorithm which solves the problem by an iterative computation of reachable states. We have implemented a concrete version of the algorithm, which uses a new approximation scheme for reachability analysis of linear systems.
Safety Verification of Hybrid Systems Using Barrier Certificates
 In Hybrid Systems: Computation and Control
, 2004
"... This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates ..."
Abstract

Cited by 92 (6 self)
 Add to MetaCart
(Show Context)
This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework.
Computational techniques for the verification of hybrid systems
 Proceedings of the IEEE
, 2003
"... Hybrid system theory lies at the intersection of the fields of engineering control theory and computer science verification. It is defined as the modeling, analysis, and control of systems that involve the interaction of both discrete state systems, represented by finite automata, and continuous sta ..."
Abstract

Cited by 67 (8 self)
 Add to MetaCart
Hybrid system theory lies at the intersection of the fields of engineering control theory and computer science verification. It is defined as the modeling, analysis, and control of systems that involve the interaction of both discrete state systems, represented by finite automata, and continuous state dynamics, represented by differential equations. The embedded autopilot of a modern commercial jet is a prime example of a hybrid system: the autopilot modes correspond to the application of different control laws, and the logic of mode switching is determined by the continuous state dynamics of the aircraft, as well as through interaction with the pilot. To understand the behavior of hybrid systems, to simulate, and to control these systems, theoretical advances, analyses, and numerical tools are needed. In this paper, we first present a general model for a hybrid system along with an overview of methods for verifying continuous and hybrid systems. We describe a particular verification
A framework for worstcase and stochastic safety verification using barrier certificates
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2007
"... This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.
Identification of piecewise affine systems via mixedinteger programming
 AUTOMATICA
, 2004
"... This paper addresses the problem of identification of hybrid dynamical systems, by focusing the attention on hinging hyperplanes (HHARX) and Wiener piecewise affine (WPWARX) autoregressive exogenous models. In particular, we provide algorithms based on mixedinteger linear or quadratic programming ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
This paper addresses the problem of identification of hybrid dynamical systems, by focusing the attention on hinging hyperplanes (HHARX) and Wiener piecewise affine (WPWARX) autoregressive exogenous models. In particular, we provide algorithms based on mixedinteger linear or quadratic programming which are guaranteed to converge to a global optimum. For the special case where switches occur only seldom in the estimation data, we also suggest a way of trading off between optimality and complexity by using a change detection approach.
Computational Techniques for the Verification and Control of Hybrid Systems
 PROCEEDINGS OF THE IEEE
, 2003
"... Hybrid system theory lies at the intersection of the fields of engineering control theory and computer science verification. It is defined as the modeling, analysis, and control of systems which involve the interaction of both discrete state systems, represented by finite automata, and continuous ..."
Abstract

Cited by 43 (9 self)
 Add to MetaCart
Hybrid system theory lies at the intersection of the fields of engineering control theory and computer science verification. It is defined as the modeling, analysis, and control of systems which involve the interaction of both discrete state systems, represented by finite automata, and continuous state dynamics, represented by differential equations. The embedded autopilot of a modern commercial jet is a prime example of a hybrid system: the autopilot modes correspond to the application of different control laws, and the logic of mode switching is determined by the continuous state dynamics of the aircraft, as well as through interaction with the pilot. Embedded
Automated Symbolic Reachability Analysis; with Application to DeltaNotch Signaling Automata
 Lecture Notes in Computer Science
, 2003
"... This paper describes the implementation of predicate abstraction techniques to automatically compute symbolic backward reachable sets of high dimensional piecewise a#ne hybrid automata, used to model DeltaNotch biological cell signaling networks. These automata are analyzed by creating an abstr ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
(Show Context)
This paper describes the implementation of predicate abstraction techniques to automatically compute symbolic backward reachable sets of high dimensional piecewise a#ne hybrid automata, used to model DeltaNotch biological cell signaling networks. These automata are analyzed by creating an abstraction of the hybrid model, which is a finite state discrete transition system, and then performing the computation on the abstracted system. All the steps, from model generation to the simplification of the reachable set, have been automated using a variety of decision procedure and theoremproving tools. The concluding example computes the reach set for a four cell network with 8 continuous and 256 discrete states. This demonstrates the feasibility of using these tools to compute on high dimensional hybrid automata, to provide deeper insight into realistic biological systems.
Moving horizon estimation for hybrid systems
 In Proceedings of the American Control Conference
, 2000
"... We propose a state smoothing algorithm for hybrid systems based on Moving Horizon Estimation (MHE) by exploiting the equivalence between hybrid systems modeled in the Mixed Logic Dynamical form and piecewise affine systems. We provide sufficient conditions on the time horizon and the penalties on th ..."
Abstract

Cited by 36 (11 self)
 Add to MetaCart
(Show Context)
We propose a state smoothing algorithm for hybrid systems based on Moving Horizon Estimation (MHE) by exploiting the equivalence between hybrid systems modeled in the Mixed Logic Dynamical form and piecewise affine systems. We provide sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee asymptotic convergence of the MHE scheme. Moreover, we propose two practical algorithms for the computation of such penalties that allow to implement MHE by solving a MixedInteger Quadratic Program.
Safety verification using barrier certificates
 In HSCC, volume 2993 of LNCS
, 2004
"... Abstract — We develop a new method for safety verification of stochastic systems based on functions of states termed barrier certificates. Given a stochastic continuous or hybrid system and sets of initial and unsafe states, our method computes an upper bound on the probability that a trajectory of ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
(Show Context)
Abstract — We develop a new method for safety verification of stochastic systems based on functions of states termed barrier certificates. Given a stochastic continuous or hybrid system and sets of initial and unsafe states, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, both the upper bound and its corresponding barrier certificate can be computed using convex optimization, and hence the method is computationally tractable. I.