Results 1  10
of
30
A Nonstandard Approach to the Logical Omniscience Problem
 Artificial Intelligence
, 1990
"... We introduce a new approach to dealing with the wellknown logical omniscience problem in epistemic logic. Instead of taking possible worlds where each world is a model of classical propositional logic, we take possible worlds which are models of a nonstandard propositional logic we call NPL, which ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
We introduce a new approach to dealing with the wellknown logical omniscience problem in epistemic logic. Instead of taking possible worlds where each world is a model of classical propositional logic, we take possible worlds which are models of a nonstandard propositional logic we call NPL, which is somewhat related to relevance logic. This approach gives new insights into the logic of implicit and explicit'belief considered by Levesque and Lakemeyer. In particular, we show that in a precise sense agents in the structures considered by Levesque and Lakemeyer are perfect reasoners in NPL. 1
Possible Worlds and Resources: The Semantics of BI
 THEORETICAL COMPUTER SCIENCE
, 2003
"... The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to a ..."
Abstract

Cited by 47 (18 self)
 Add to MetaCart
The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to arise from two main perspectives. On the one hand, from prooftheoretic or categorical concerns and, on the other, from a possibleworlds semantics based on preordered (commutative) monoids. This semantics may be motivated from a basic model of the notion of resource. We explain BI's prooftheoretic, categorical and semantic origins. We discuss in detail the question of completeness, explaining the essential distinction between BI with and without ? (the unit of _). We give an extensive discussion of BI as a semantically based logic of resources, giving concrete models based on Petri nets, ambients, computer memory, logic programming, and money.
Multimodal Linguistic Inference
, 1995
"... In this paper we compare grammatical inference in the context of simple and of mixed Lambek systems. Simple Lambek systems are obtained by taking the logic of residuation for a family of multiplicative connectives =; ffl; n, together with a package of structural postulates characterizing the resourc ..."
Abstract

Cited by 40 (6 self)
 Add to MetaCart
In this paper we compare grammatical inference in the context of simple and of mixed Lambek systems. Simple Lambek systems are obtained by taking the logic of residuation for a family of multiplicative connectives =; ffl; n, together with a package of structural postulates characterizing the resource management properties of the ffl connective. Different choices for Associativity and Commutativity yield the familiar logics NL, L, NLP, LP. Semantically, a simple Lambek system is a unimodal logic: the connectives get a Kripke style interpretation in terms of a single ternary accessibility relation modeling the notion of linguistic composition for each individual system. The simple systems each have their virtues in linguistic analysis. But none of them in isolation provides a basis for a full theory of grammar. In the second part of the paper, we consider two types of mixed Lambek systems. The first type is obtained by combining a number of unimodal systems into one multimodal logic. The...
Substructural Logics on Display
, 1998
"... Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen's sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek calculu ..."
Abstract

Cited by 38 (16 self)
 Add to MetaCart
Substructural logics are traditionally obtained by dropping some or all of the structural rules from Gentzen's sequent calculi LK or LJ. It is well known that the usual logical connectives then split into more than one connective. Alternatively, one can start with the (intuitionistic) Lambek calculus, which contains these multiple connectives, and obtain numerous logics like: exponentialfree linear logic, relevant logic, BCK logic, and intuitionistic logic, in an incremental way. Each of these logics also has a classical counterpart, and some also have a "cyclic" counterpart. These logics have been studied extensively and are quite well understood. Generalising further, one can start with intuitionistic BiLambek logic, which contains the dual of every connective from the Lambek calculus. The addition of the structural rules then gives Bilinear, Birelevant, BiBCK and Biintuitionistic logic, again in an incremental way. Each of these logics also has a classical counterpart, and som...
Separation Logic Semantics of Communicating Processes
 In FICS
, 2008
"... This paper explores a unification of the ideas of Concurrent Separation Logic with those of Communicating Sequential Processes. It extends separation logic by an operator for separation in time as well as separation in space. It extends CSP in the direction of the picalculus: dynamic change of alph ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
This paper explores a unification of the ideas of Concurrent Separation Logic with those of Communicating Sequential Processes. It extends separation logic by an operator for separation in time as well as separation in space. It extends CSP in the direction of the picalculus: dynamic change of alphabet is achieved by communication of channel names. Separation is exploited to ensure that each channel still has only two ends. For purposes of exploration, the model is the simplest possible, confined to traces without refusals. The treatment is sufficiently general to facilitate extensions by standard techniques for sharing multiplexed channels and heap state. 1
Natural Deduction for NonClassical Logics
, 1996
"... We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke m ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke models. By appropriate combinations we capture both partial and complete fragments of large families of nonclassical logics such as modal, relevance, and intuitionistic logics. Our approach is modular and supports uniform proofs of correctness and proof normalization. We have implemented our work in the Isabelle Logical Framework.
First Order Linear Logic in Symmetric Monoidal Closed Categories
, 1991
"... There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encodin ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encoding of logics, and the second a uniform treatment of their model theory. This thesis forms a case study for the work on model theory. The models of many first and higher order logics can be represented as fibred or indexed categories with certain extra structure, and this has been suggested as a general paradigm. The aim of the thesis is to test the strength and flexibility of this paradigm by studying the specific case of Girard's linear logic. It should be noted that the exact form of this logic in the first order case is not entirely certain, and the system treated here is significantly different to that considered by Girard.
Diamonds are a Philosopher's Best Friends. The Knowability Paradox and Modal Epistemic Relevance Logic (Extended Abstract)
 Journal of Philosophical Logic
, 2002
"... Heinrich Wansing Dresden University of Technology The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Heinrich Wansing Dresden University of Technology The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the unwanted disappearance of the diamond may be escaped. The emphasis is not laid on a discussion of the contentious premise of the knowability paradox, namely that all truths are possibly known, but on how from this assumption the conclusion is derived that all truths are, in fact, known. Nevertheless, the solution o#ered is in the spirit of the constructivist attitude usually maintained by defenders of the antirealist premise. In order to avoid the paradoxical reasoning, a paraconsistent constructive relevant modal epistemic logic with strong negation is defined semantically. The system is axiomatized and shown to be complete.
Combinators and Structurally Free Logic
 LOGIC JOURNAL OF THE IGPL
, 1997
"... A "Kripkestyle" semantics is given for combinatory logic using frames with a ternary accessibility relation, much as in the RoutleyMeyer semantics for relevance logic. We prove by algebraic means a completeness theorem for combinatory logic, by proving a representation theorem for "combinatory pos ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
A "Kripkestyle" semantics is given for combinatory logic using frames with a ternary accessibility relation, much as in the RoutleyMeyer semantics for relevance logic. We prove by algebraic means a completeness theorem for combinatory logic, by proving a representation theorem for "combinatory posets." A philosophical interpretation is given of the models, showing that an element of a combinatory poset can be understood simultaneously as a set of states and as a set of (untyped) actions on states. This double interpretation allows for one such element to be applied to another (including itself). Application turns out to be modeled the same way as "fusion" in relevance logic. We also introduce "dual combinators" that apply from the right. We then explore relationships to some wellknown substructural logics, showing that each can be embedded into the structurally free, nonassociative Lambek calculus, with the embedding taking a theorem # to a statement of the form # # #, where # i...