Results 1  10
of
17
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 73 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
A Concurrent Logical Framework II: Examples and Applications
, 2002
"... CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the ..."
Abstract

Cited by 45 (29 self)
 Add to MetaCart
CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #.
Possible Worlds and Resources: The Semantics of BI
 THEORETICAL COMPUTER SCIENCE
, 2003
"... The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to a ..."
Abstract

Cited by 45 (17 self)
 Add to MetaCart
The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to arise from two main perspectives. On the one hand, from prooftheoretic or categorical concerns and, on the other, from a possibleworlds semantics based on preordered (commutative) monoids. This semantics may be motivated from a basic model of the notion of resource. We explain BI's prooftheoretic, categorical and semantic origins. We discuss in detail the question of completeness, explaining the essential distinction between BI with and without ? (the unit of _). We give an extensive discussion of BI as a semantically based logic of resources, giving concrete models based on Petri nets, ambients, computer memory, logic programming, and money.
On Bunched Typing
, 2002
"... We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched ..."
Abstract

Cited by 33 (2 self)
 Add to MetaCart
We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched typing and its logical counterpart, bunched implications, have arisen in joint work of the author and David Pym. The present paper gives a basic account of the type system, and then focusses on concrete models that illustrate how it may be understood in terms of resource access and sharing. The most
A Linear Spine Calculus
 Journal of Logic and Computation
, 2003
"... We present the spine calculus S ##&# as an efficient representation for the linear #calculus # ##&# which includes unrestricted functions (#), linear functions (#), additive pairing (&), and additive unit (#). S ##&# enhances the representation of Church's simply typed #calculus by enforcing ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
We present the spine calculus S ##&# as an efficient representation for the linear #calculus # ##&# which includes unrestricted functions (#), linear functions (#), additive pairing (&), and additive unit (#). S ##&# enhances the representation of Church's simply typed #calculus by enforcing extensionality and by incorporating linear constructs. This approach permits procedures such as unification to retain the efficient head access that characterizes firstorder term languages without the overhead of performing #conversions at run time. Applications lie in proof search, logic programming, and logical frameworks based on linear type theories. It is also related to foundational work on term assignment calculi for presentations of the sequent calculus. We define the spine calculus, give translations of # ##&# into S ##&# and viceversa, prove their soundness and completeness with respect to typing and reductions, and show that the typable fragment of the spine calculus is strongly normalizing and admits unique canonical, i.e. ##normal, forms.
A Concurrent Logical Framework: The Propositional Fragment
, 2003
"... We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations. This separation leads to a tractable notion of definitional equality that identifies computations di#ering only in the order of execution of independent steps. From a logical point of view our type theory can be seen as a novel combination of lax logic and dual intuitionistic linear logic. An encoding of a small Petri net exemplifies the representation methodology, which can be summarized as "concurrent computations as monadic expressions ".
On Bunched Predicate Logic
 Proceedings of the IEEE Symposium on Logic in Computer Science
, 1999
"... We present the logic of bunched implications, BI, in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication, and may be viewe ..."
Abstract

Cited by 29 (17 self)
 Add to MetaCart
We present the logic of bunched implications, BI, in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication, and may be viewed as a merging of intuitionistic logic and multiplicative, intuitionistic linear logic. The predicate version of BI includes, in addition to usual additive quantifiers, multiplicative (or intensional) quantifiers 8new and 9new , which arise from observing restrictions on structural rules on the level of terms as well as propositions. Moreover, these restrictions naturally allow the distinction between additive predication and multiplicative predication for each propositional connective. We provide a natural deduction system, a sequent calculus, a Kripke semantics and a BHK semantics for BI. We mention computational interpretations, based on locality and sharing, at both the propositiona...
Hybridizing a logical framework
 In International Workshop on Hybrid Logic 2006 (HyLo 2006), Electronic Notes in Computer Science
, 2006
"... The logical framework LF is a constructive type theory of dependent functions that can elegantly encode many other logical systems. Prior work has studied the benefits of extending it to the linear logical framework LLF, for the incorporation linear logic features into the type theory affords good r ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
The logical framework LF is a constructive type theory of dependent functions that can elegantly encode many other logical systems. Prior work has studied the benefits of extending it to the linear logical framework LLF, for the incorporation linear logic features into the type theory affords good representations of state change. We describe and argue for the usefulness of an extension of LF by features inspired by hybrid logic, which has several benefits. For one, it shows how linear logic features can be decomposed into primitive operations manipulating abstract resource labels. More importantly, it makes it possible to realize a metalogical framework capable of reasoning about stateful deductive systems encoded in the style familiar from prior work with LLF, taking advantage of familiar methodologies used for metatheoretic reasoning in LF.Acknowledgments From the very first computer science course I took at CMU, Frank Pfenning has been an exceptional teacher and mentor. For his patience, breadth of knowledge, and mathematical good taste I am extremely thankful. No less do I owe to the other two major contributors to my programming languages
Kripke Resource Models of a DependentlyTyped, Bunched lambdaCalculus (Extended Abstract)
, 1999
"... The lLcalculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Second ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
The lLcalculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proofobjects of BI, the logic of bunched implications. BI is a logic which directly combines linear and intuitionistic implication and, in its predicate version, has both linear and intuitionistic quantifiers. The lLcalculus is the dependent type theory which generalizes both implications and quantifiers. In this paper, we describe the categorical semantics of the lLcalculus. This is given by Kripke resource models, which are monoidindexed sets of functorial Kripke models, the monoid giving an account of resource consumption. We describe a class of concrete, settheoretic models. The models are given by the category of families of sets, parametrized over a small monoidal category, in which the intuitionistic dependent function space is described in the established way, but the linear dependent function space is described using Day's tensor product.
Corrections and Remarks
 University of Edinburgh LFCS Report
, 2000
"... This document contains corrections to errors discovered todate in, and also some remarks upon, both Samin Ishtiaq's thesis, A Relevant Analysis of Natural Deduction [Ish99] and also the JLC [IP98] and CSL [IP99] papers, by Ishtiaq and Pym, that follow from it. 1 Introduction This document cont ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
This document contains corrections to errors discovered todate in, and also some remarks upon, both Samin Ishtiaq's thesis, A Relevant Analysis of Natural Deduction [Ish99] and also the JLC [IP98] and CSL [IP99] papers, by Ishtiaq and Pym, that follow from it. 1 Introduction This document contains corrections to errors discovered todate in both Samin Ishtiaq's thesis, A Relevant Analysis of Natural Deduction [Ish99] and also the JLC [IP98] and CSL [IP99] papers, by Ishtiaq and Pym, that follow from it. The postscript version of the thesis, available http://www.dcs.qmw.ac.uk/si, is the source of the hardbound copies submitted to the libraries of the University of London (Senate House) and Queen Mary and Westeld College. A copy of this document has been deposited with the Librarians at both of these institutions. 2 Ishtiaq's Ph.D. thesis [Ish99] The corrections are listed by chapter title. 2.1 Introduction On Page 12, Line 10, replace \fragment" by \variant". (Section 2.3 be...