Results 1  10
of
135
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 75 (9 self)
 Add to MetaCart
(Show Context)
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Algebraic Operations and Generic Effects
 Applied Categorical Structures
, 2003
"... Given a complete and cocomplete symmetric monoidal closed category V and a symmetric monoidal Vcategory C with cotensors and a strong Vmonad T on C, we investigate axioms under which an ObCindexed family of operations of the form α_x : (Tx)^ν → (Tx)^ω provides ..."
Abstract

Cited by 54 (7 self)
 Add to MetaCart
(Show Context)
Given a complete and cocomplete symmetric monoidal closed category V and a symmetric monoidal Vcategory C with cotensors and a strong Vmonad T on C, we investigate axioms under which an ObCindexed family of operations of the form &alpha;_x : (Tx)^&nu; &rarr; (Tx)^&omega; provides semantics for algebraic operations on the computational &lambda;calculus. We recall a definition for which we have elsewhere given adequacy results, and we show that an enrichment of it is equivalent to a range of other possible natural definitions of algebraic operation. In particular, we define the notion of generic effect and show that to give a generic effect is equivalent to giving an algebraic operation. We further show how the usual monadic semantics of the computational &lambda;calculus extends uniformly to incorporate generic effects. We outline examples and nonexamples and we show that our definition also enriches one for callbyname languages with e#ects.
Possible Worlds and Resources: The Semantics of BI
 THEORETICAL COMPUTER SCIENCE
, 2003
"... The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to a ..."
Abstract

Cited by 51 (19 self)
 Add to MetaCart
The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to arise from two main perspectives. On the one hand, from prooftheoretic or categorical concerns and, on the other, from a possibleworlds semantics based on preordered (commutative) monoids. This semantics may be motivated from a basic model of the notion of resource. We explain BI's prooftheoretic, categorical and semantic origins. We discuss in detail the question of completeness, explaining the essential distinction between BI with and without ? (the unit of _). We give an extensive discussion of BI as a semantically based logic of resources, giving concrete models based on Petri nets, ambients, computer memory, logic programming, and money.
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 49 (19 self)
 Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Syntactic Control of Interference Revisited
, 1995
"... In "Syntactic Control of Interference" (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algollike languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imper ..."
Abstract

Cited by 42 (6 self)
 Add to MetaCart
In "Syntactic Control of Interference" (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algollike languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative concepts, having the desirable attributes of both purely functional languages (such as pcf) and simple imperative languages (such as the language of while programs). However, Reynolds points out that the "obvious" syntax for interference control has the unfortunate property that fireductions do not always preserve typings. Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but it is fairly complicated and requires intersection types in the type system. Here, we present a much simpler solution which does not require intersection types. We first describe a new type system inspired in part by linear logic and verify that reductions preserve typings. We then define a class...
Quantum categories, star autonomy, and quantum groupoids
 in &quot;Galois Theory, Hopf Algebras, and Semiabelian Categories&quot;, Fields Institute Communications 43 (American Math. Soc
, 2004
"... Abstract A useful general concept of bialgebroid seems to be resolving itself in recent publications; we give a treatment in terms of modules and enriched categories. Generalizing this concept, we define the term "quantum category"in a braided monoidal category with equalizers dist ..."
Abstract

Cited by 39 (13 self)
 Add to MetaCart
Abstract A useful general concept of bialgebroid seems to be resolving itself in recent publications; we give a treatment in terms of modules and enriched categories. Generalizing this concept, we define the term &quot;quantum category&quot;in a braided monoidal category with equalizers distributed over by tensoring with an object. The definition of antipode for a bialgebroid is less resolved in the literature. Our suggestion is that the kind of dualization occurring in Barr's starautonomous categories is more suitable than autonomy ( = compactness = rigidity). This leads to our definition of quantum groupoid intended as a &quot;Hopf algebra with several objects&quot;. 1.
On Bunched Typing
, 2002
"... We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched ..."
Abstract

Cited by 38 (2 self)
 Add to MetaCart
(Show Context)
We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched typing and its logical counterpart, bunched implications, have arisen in joint work of the author and David Pym. The present paper gives a basic account of the type system, and then focusses on concrete models that illustrate how it may be understood in terms of resource access and sharing. The most
Frobenius monads and pseudomonoids
 2CATEGORIES COMPANION 73
, 2004
"... Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalenc ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
(Show Context)
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to &quot;strongly separable &quot; Frobenius algebras and &quot;weak monoidal Morita equivalence&quot;. Wreath products of Frobenius algebras are discussed.
Enriched categories, internal categories and change of base
 Repr. Theory Appl. Categ
"... ..."
(Show Context)
On Bunched Predicate Logic
 Proceedings of the IEEE Symposium on Logic in Computer Science
, 1999
"... We present the logic of bunched implications, BI, in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication, and may be viewe ..."
Abstract

Cited by 31 (18 self)
 Add to MetaCart
(Show Context)
We present the logic of bunched implications, BI, in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication, and may be viewed as a merging of intuitionistic logic and multiplicative, intuitionistic linear logic. The predicate version of BI includes, in addition to usual additive quantifiers, multiplicative (or intensional) quantifiers 8new and 9new , which arise from observing restrictions on structural rules on the level of terms as well as propositions. Moreover, these restrictions naturally allow the distinction between additive predication and multiplicative predication for each propositional connective. We provide a natural deduction system, a sequent calculus, a Kripke semantics and a BHK semantics for BI. We mention computational interpretations, based on locality and sharing, at both the propositiona...