Results 1  10
of
159
On the distribution of spacings between zeros of the zeta function
 MATH. COMP
, 1987
"... A numerical study of the distribution of spacings between zeros of the Riemann zeta function is presented. It is based on values for the first 10 5 zeros and for zeros number 10 12 + 1 to 10 12 + 10 5 that are accurate to within ± 10 − 8, and which were calculated on the Cray1 and Cray XMP compute ..."
Abstract

Cited by 81 (9 self)
 Add to MetaCart
A numerical study of the distribution of spacings between zeros of the Riemann zeta function is presented. It is based on values for the first 10 5 zeros and for zeros number 10 12 + 1 to 10 12 + 10 5 that are accurate to within ± 10 − 8, and which were calculated on the Cray1 and Cray XMP computers. This study tests the Montgomery pair correlation conjecture as well as some further conjectures that predict that the zeros of the zeta function behave similarly to eigenvalues of random hermitian matrices. Matrices of this type are used in modeling energy levels in physics, and many statistical properties of their eigenvalues are known. The agreement between actual statistics for zeros of the zeta function and conjectured results is generally good, and improves at larger heights. Several initially unexpected phenomena were found in the data and some were explained by
Distribution on partitions, point processes, and the hypergeometric kernel
 Comm. Math. Phys
"... Abstract. We study a 3–parametric family of stochastic point processes on the one–dimensional lattice originated from a remarkable family of representations of the infinite symmetric group. We prove that the correlation functions of the processes are given by determinantal formulas with a certain ke ..."
Abstract

Cited by 47 (17 self)
 Add to MetaCart
Abstract. We study a 3–parametric family of stochastic point processes on the one–dimensional lattice originated from a remarkable family of representations of the infinite symmetric group. We prove that the correlation functions of the processes are given by determinantal formulas with a certain kernel. The kernel can be expressed through the Gauss hypergeometric function; we call it the hypergeometric kernel. In a scaling limit our processes approximate the processes describing the decomposition of representations mentioned above into irreducibles. As we showed before, see math.RT/9810015, the correlation functions of these limit processes also have determinantal form with so–called Whittaker kernel. We show that the scaling limit of the hypergeometric kernel is the Whittaker kernel. The integral operator corresponding to the Whittaker kernel is an integrable operator as defined by Its, Izergin, Korepin, and Slavnov. We argue that the hypergeometric kernel can be considered as a kernel defining a ‘discrete integrable operator’. We also show that the hypergeometric kernel degenerates for certain values of parameters to the Christoffel–Darboux kernel for Meixner orthogonal polynomials.
Matrix models for circular ensembles
 Int. Math. Res. Not
"... Abstract. The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by E β n(f) = 1 · · · f(e ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
Abstract. The Gibbs distribution for n particles of the Coulomb gas on the unit circle at inverse temperature β is given by E β n(f) = 1 · · · f(e
Loggases and random matrices
, 2010
"... method to calculate correlation functions for β = 1 random ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
method to calculate correlation functions for β = 1 random
Point processes and the infinite symmetric group. Part III: Fermion point processes
, 1998
"... Abstract. We study a 2parametric family of probability measures on an infinite– dimensional simplex (the Thoma simplex). These measures originate in harmonic analysis on the infinite symmetric group (S. Kerov, G. Olshanski and A. Vershik, Comptes Rendus Acad. Sci. Paris I 316 (1993), 773778). Our ..."
Abstract

Cited by 40 (20 self)
 Add to MetaCart
Abstract. We study a 2parametric family of probability measures on an infinite– dimensional simplex (the Thoma simplex). These measures originate in harmonic analysis on the infinite symmetric group (S. Kerov, G. Olshanski and A. Vershik, Comptes Rendus Acad. Sci. Paris I 316 (1993), 773778). Our approach is to interprete them as probability distributions on a space of point configurations, i.e., as certain point stochastic processes, and to find the correlation functions of these processes. In the present paper we relate the correlation functions to the solutions of certain multidimensional moment problems. Then we calculate the first correlation function which leads to a conclusion about the support of the initial measures. In the appendix, we discuss a parallel but more elementary theory related to the well–known Poisson–Dirichlet distribution. The higher correlation functions are explicitly calculated in the subsequent paper (A. Borodin). In the third part (A. Borodin and G. Olshanski) we discuss some applications and relationships with the random matrix theory. The goal of our work is to understand new phenomena in noncommutative harmonic analysis which arise when the irreducible representations depend on countably many continuous parameters.
The Riemann Zeros and Eigenvalue Asymptotics
 SIAM Rev
, 1999
"... Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many feat ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many features of H cl are provided by the analogy; for example, the "Riemann dynamics" should be chaotic and have periodic orbits whose periods are multiples of logarithms of prime numbers. Statistics of the t n have a similar structure to those of the semiclassical En ; in particular, they display randommatrix universality at short range, and nonuniversal behaviour over longer ranges. Very refined features of the statistics of the t n can be computed accurately from formulae with quantum analogues. The RiemannSiegel formula for the zeta function is described in detail. Its interpretation as a relation between long and short periodic orbits gives further insights into the quantum spectral fluctuations. We speculate that the Riemann dynamics is related to the trajectories generated by the classical hamiltonian H cl = XP. Key words. spectral asymptotics, number theory AMS subject classifications. 11M26, 11M06, 35P20, 35Q40, 41A60, 81Q10, 81Q50 PII. S0036144598347497 1.
The problem of harmonic analysis on the infinitedimensional unitary group
 J. Funct. Anal. 205, no
"... Abstract. The infinite–dimensional unitary group U(∞) is the inductive limit of growing compact unitary groups U(N). In this paper we solve a problem of harmonic analysis on U(∞) stated in [Ol3]. The problem consists in computing spectral decomposition for a remarkable 4–parameter family of characte ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Abstract. The infinite–dimensional unitary group U(∞) is the inductive limit of growing compact unitary groups U(N). In this paper we solve a problem of harmonic analysis on U(∞) stated in [Ol3]. The problem consists in computing spectral decomposition for a remarkable 4–parameter family of characters of U(∞). These characters generate representations which should be viewed as analogs of nonexisting regular representation of U(∞). The spectral decomposition of a character of U(∞) is described by the spectral measure which lives on an infinite–dimensional space Ω of indecomposable characters. The key idea which allows us to solve the problem is to embed Ω into the space of point configurations on the real line without 2 points. This turns the spectral measure into a stochastic point process on the real line. The main result of the paper is a complete description of the processes corresponding to our concrete family of characters. We prove that each of the processes is a determinantal point process. That is, its correlation functions have determinantal form with a certain kernel. Our kernels have a special ‘integrable ’ form and are expressed through the Gauss
ZMeasures on Partitions, RobinsonSchenstedKnuth Correspondence, and beta = 2 Random Matrix Ensembles
 Random Matrix Models and Their Applications, volume 40 of Math. Sci. Res. Inst. Publ
, 1999
"... We suggest an hierarchy of all the results known so far about the connection of the asymptotics of combinatorial or representation theoretic problems with "fi = 2 ensembles" arising in the random matrix theory. We show that all such results are, essentially, degenerations of one general situation ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
We suggest an hierarchy of all the results known so far about the connection of the asymptotics of combinatorial or representation theoretic problems with "fi = 2 ensembles" arising in the random matrix theory. We show that all such results are, essentially, degenerations of one general situation arising from socalled generalized regular representations of the infinite symmetric group.