Results 1  10
of
521
Common Risk Factors in the Returns On Stocks And Bonds
 Journal of Financial Economics
, 1993
"... This paper identities five common risk factors in the returns on stocks and bonds. There are three stockmarket factors: an overall market factor and factors related to firm size and booktomarket equity. There are two bondmarket factors. related to maturity and default risks. Stock returns have s ..."
Abstract

Cited by 955 (24 self)
 Add to MetaCart
This paper identities five common risk factors in the returns on stocks and bonds. There are three stockmarket factors: an overall market factor and factors related to firm size and booktomarket equity. There are two bondmarket factors. related to maturity and default risks. Stock returns have shared variation due to the stockmarket factors, and they are linked to bond returns through shared variation in the bondmarket factors. Except for lowgrade corporates. the bondmarket factors capture the common variation in bond returns. Most important. the five factors seem to explain average returns on stocks and bonds. 1.
AN EQUILIBRIUM CHARACTERIZATION OF THE TERM STRUCTURE
, 1977
"... The paper derives a general form of the term structure of interest rates. The following assumptions are made: (A.l) The instantaneous (spot) interest rate follows a diffusion process; (A.2) the price of a discount bond depends only on the spot rate over its term; and (A.3) the market is efficient. U ..."
Abstract

Cited by 603 (0 self)
 Add to MetaCart
The paper derives a general form of the term structure of interest rates. The following assumptions are made: (A.l) The instantaneous (spot) interest rate follows a diffusion process; (A.2) the price of a discount bond depends only on the spot rate over its term; and (A.3) the market is efficient. Under these assumptions, it is shown by means of an arbitrage argument that the expected rate of return on any bond in excess of the spot rate is proportional to its standard deviation. This property is then used to derive a partial differential equation for bond prices. The solution to that equation is given in the form of a stochastic integral representation. An interpretation of the bond pricing formula is provided. The model is illustrated on a specific case.
Market Efficiency, LongTerm Returns, and Behavioral Finance
, 1998
"... Market e#ciency survives the challenge from the literature on longterm return anomalies. Consistent with the market e#ciency hypothesis that the anomalies are chance results, apparent overreaction to information is about as common as underreaction, and postevent continuation of preevent abnormal ..."
Abstract

Cited by 366 (4 self)
 Add to MetaCart
Market e#ciency survives the challenge from the literature on longterm return anomalies. Consistent with the market e#ciency hypothesis that the anomalies are chance results, apparent overreaction to information is about as common as underreaction, and postevent continuation of preevent abnormal returns is about as frequent as postevent reversal. Most important, consistent with the market e#ciency prediction that apparent anomalies can be due to methodology, most longterm return anomalies tend to disappear with reasonable changes in technique. # 1998 Elsevier Science S.A. All rights reserved.
A unified theory of underreaction, momentum trading and overreaction in asset markets
, 1999
"... We model a market populated by two groups of boundedly rational agents: “newswatchers” and “momentum traders.” Each newswatcher observes some private information, but fails to extract other newswatchers’ information from prices. If information diffuses gradually across the population, prices underre ..."
Abstract

Cited by 285 (23 self)
 Add to MetaCart
We model a market populated by two groups of boundedly rational agents: “newswatchers” and “momentum traders.” Each newswatcher observes some private information, but fails to extract other newswatchers’ information from prices. If information diffuses gradually across the population, prices underreact in the short run. The underreaction means that the momentum traders can profit by trendchasing. However, if they can only implement simple (i.e., univariate) strategies, their attempts at arbitrage must inevitably lead to overreaction at long horizons. In addition to providing a unified account of under and overreactions, the model generates several other distinctive implications.
Investing for the long run when returns are predictable
 Journal of Finance
, 2000
"... We examine how the evidence of predictability in asset returns affects optimal portfolio choice for investors with long horizons. Particular attention is paid to estimation risk, or uncertainty about the true values of model parameters. We find that even after incorporating parameter uncertainty, th ..."
Abstract

Cited by 283 (0 self)
 Add to MetaCart
We examine how the evidence of predictability in asset returns affects optimal portfolio choice for investors with long horizons. Particular attention is paid to estimation risk, or uncertainty about the true values of model parameters. We find that even after incorporating parameter uncertainty, there is enough predictability in returns to make investors allocate substantially more to stocks, the longer their horizon. Moreover, the weak statistical significance of the evidence for predictability makes it important to take estimation risk into account; a longhorizon investor who ignores it may overallocate to stocks by a sizeable amount. ONE OF THE MORE STRIKING EMPIRICAL FINDINGS in recent financial research is the evidence of predictability in asset returns. 1 In this paper we examine the implications of this predictability for an investor seeking to make sensible portfolio allocation decisions. We approach this question from the perspective of horizon effects: Given the evidence of predictability in returns, should a longhorizon investor allocate his wealth differently from a shorthorizon investor? The motivation for thinking about the problem in these terms is the classic work of Samuelson ~1969! and Merton ~1969!. They show that if asset returns are i.i.d., an investor with power utility who rebalances his portfolio optimally should choose the same asset allocation, regardless of investment horizon. In light of the growing body of evidence that returns are predictable, the investor’s horizon may no longer be irrelevant. The extent to which the horizon does play a role serves as an interesting and convenient way of thinking about how predictability affects portfolio choice. Moreover, the results may shed light on the common but controversial advice that investors with long horizons should allocate more heavily to stocks. 2
On estimating the expected return on the market  an exploratory investigation
 Journal of Financial Economics
, 1980
"... The expected market return is a number frequently required for the solution of many investment and corporate tinance problems, but by comparison with other tinancial variables, there has been little research on estimating this expected return. Current practice for estimating the expected market retu ..."
Abstract

Cited by 245 (1 self)
 Add to MetaCart
The expected market return is a number frequently required for the solution of many investment and corporate tinance problems, but by comparison with other tinancial variables, there has been little research on estimating this expected return. Current practice for estimating the expected market return adds the historical average realized excess market returns to the current observed interest rate. While this model explicitly reflects the dependence of the market return on the interest rate, it fails to account for the effect of changes in the level of market risk. Three models of equilibrium expected market returns which reflect this dependence are analyzed in this paper. Estimation procedures which incorporate the prior restriction that equilibrium expected excess returns on the market must be positive are derived and applied to return data for the period 19261978. The principal conclusions from this exploratory investigation are: (1) in estimating models of the expected market return, the nonnegativity restriction of the expected excess return should be explicitly included as part of the specification; (2) estimators which use realized returns should be adjusted for heteroscedasticity. 1.
Liquidity Risk and Expected Stock Returns
, 2002
"... This study investigates whether marketwide liquidity is a state variable important for asset pricing. We find that expected stock returns are related crosssectionally to the sensitivities of returns to fluctuations in aggregate liquidity. Our monthly liquidity measure, an average of individualsto ..."
Abstract

Cited by 229 (2 self)
 Add to MetaCart
This study investigates whether marketwide liquidity is a state variable important for asset pricing. We find that expected stock returns are related crosssectionally to the sensitivities of returns to fluctuations in aggregate liquidity. Our monthly liquidity measure, an average of individualstock measures estimated with daily data, relies on the principle that order flow induces greater return reversals when liquidity is lower. Over a 34year period, the average return on stocks with high sensitivities to liquidity exceeds that for stocks with low sensitivities by 7.5 % annually, adjusted for exposures to the market return as well as size, value, and momentum factors.
Consumption, Aggregate Wealth, and Expected Stock Returns
 THE JOURNAL OF FINANCE • VOL. LVI, NO. 3 • JUNE 2001
, 2001
"... This paper studies the role of fluctuations in the aggregate consumption–wealth ratio for predicting stock returns. Using U.S. quarterly stock market data, we find that these fluctuations in the consumption–wealth ratio are strong predictors of both real stock returns and excess returns over a Treas ..."
Abstract

Cited by 150 (18 self)
 Add to MetaCart
This paper studies the role of fluctuations in the aggregate consumption–wealth ratio for predicting stock returns. Using U.S. quarterly stock market data, we find that these fluctuations in the consumption–wealth ratio are strong predictors of both real stock returns and excess returns over a Treasury bill rate. We also find that this variable is a better forecaster of future returns at short and intermediate horizons than is the dividend yield, the dividend payout ratio, and several other popular forecasting variables. Why should the consumption–wealth ratio forecast asset returns? We show that a wide class of optimal models of consumer behavior imply that the log consumption–aggregate wealth ~human capital plus asset holdings! ratio summarizes expected returns on aggregate wealth, or the market portfolio. Although this ratio is not observable, we provide assumptions under which its important predictive components for future asset returns may be expressed in terms of observable variables, namely in terms of consumption, asset holdings and labor income. The framework implies that these variables are cointegrated, and
Value versus growth: The international evidence
 JOURNAL OF FINANCE
, 1998
"... Value stocks have higher returns than growth stocks in markets around the world. For the period 1975 through 1995, the difference between the average returns on global portfolios of high and low booktomarket stocks is 7.68 percent per year, and value stocks outperform growth stocks in twelve of th ..."
Abstract

Cited by 123 (6 self)
 Add to MetaCart
Value stocks have higher returns than growth stocks in markets around the world. For the period 1975 through 1995, the difference between the average returns on global portfolios of high and low booktomarket stocks is 7.68 percent per year, and value stocks outperform growth stocks in twelve of thirteen major markets. An international capital asset pricing model cannot explain the value premium, but a twofactor model that includes a risk factor for relative distress captures the value premium in international returns.
Asset pricing at the millennium
 Journal of Finance
"... This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior of the term structure of real interest rates restricts the conditional mean of the SDF, whereas patterns of risk premia restrict its conditional volatility and factor structure. Stylized facts about interest rates, aggregate stock prices, and crosssectional patterns in stock returns have stimulated new research on optimal portfolio choice, intertemporal equilibrium models, and behavioral finance. This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work. Theorists develop models with testable predictions; empirical researchers document “puzzles”—stylized facts that fail to fit established theories—and this stimulates the development of new theories. Such a process is part of the normal development of any science. Asset pricing, like the rest of economics, faces the special challenge that data are generated naturally rather than experimentally, and so researchers cannot control the quantity of data or the random shocks that affect the data. A particularly interesting characteristic of the asset pricing field is that these random shocks are also the subject matter of the theory. As Campbell, Lo, and MacKinlay ~1997, Chap. 1, p. 3! put it: What distinguishes financial economics is the central role that uncertainty plays in both financial theory and its empirical implementation. The starting point for every financial model is the uncertainty facing investors, and the substance of every financial model involves the impact of uncertainty on the behavior of investors and, ultimately, on mar* Department of Economics, Harvard University, Cambridge, Massachusetts