Results

**1 - 2**of**2**### An Algorithm for Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity

"... We present a sound and complete graphical criterion for reading dependencies from the minimal undirected independence map G of a graphoid M that satisfies weak transitivity. Here, complete means that it is able to read all the dependencies in M that can be derived by applying the graphoid properties ..."

Abstract
- Add to MetaCart

We present a sound and complete graphical criterion for reading dependencies from the minimal undirected independence map G of a graphoid M that satisfies weak transitivity. Here, complete means that it is able to read all the dependencies in M that can be derived by applying the graphoid properties and weak transitivity to the dependencies used in the construction of G and the independencies obtained from G by vertex separation. We argue that assuming weak transitivity is not too restrictive. As an intermediate step in the derivation of the graphical criterion, we prove that for any undirected graph G there exists a strictly positive discrete probability distribution with the prescribed sample spaces that is faithful to G. We also report an algorithm that implements the graphical criterion and whose running time is considered to be at most O(n 2 (e+n)) for n nodes and e edges. Finally, we illustrate how the graphical criterion can be used within bioinformatics to identify biologically meaningful gene dependencies.

### Faithfulness in Chain Graphs: The Gaussian Case

"... This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg interpretation. We prove that almost all the regular Gaussian distributions that factorize with respect to a chain graph are faithful to it. This result has three important consequences. First, chain graphs are more po ..."

Abstract
- Add to MetaCart

This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg interpretation. We prove that almost all the regular Gaussian distributions that factorize with respect to a chain graph are faithful to it. This result has three important consequences. First, chain graphs are more powerful than undirected graphs and acyclic directed graphs for representing regular Gaussian distributions, as some of these distributions can be represented exactly by the former but not by the latter. Second, the moralization and c-separation criteria for reading independencies from a chain graph are complete, in the sense that they identify all the independencies that can be identified from the chain graph alone. Third, some definitions of equivalence in chain graphs coincide and, thus, they have the same graphical characterization. 1