Results 1 
2 of
2
Why the Quantum?
, 2004
"... This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of informa ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of information transfer, as opposed to a theory about the mechanics of nonclassical waves or particles, (2) given the informationtheoretic constraints, any mechanical theory of quantum phenomena that includes an account of the measuring instruments that reveal these phenomena must be empirically equivalent to a quantum theory, and (3) assuming the informationtheoretic constraints are in fact satisfied in our world, no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information.
Quantum Mechanics is About Quantum Information
, 2005
"... I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s spec ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical entity in its own right.