Results 1 
8 of
8
Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry
, 2004
"... ..."
Isoperimetry between exponential and Gaussian
 Electronic J. Prob
"... We study in details the isoperimetric profile of product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate halfspaces are approximate solutions of the isoperimetric problem. 1 ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
We study in details the isoperimetric profile of product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate halfspaces are approximate solutions of the isoperimetric problem. 1
On the role of convexity in isoperimetry, spectralgap and concentration
 Invent. Math
"... We show that for convex domains in Euclidean space, Cheeger’s isoperimetric inequality, spectral gap of the Neumann Laplacian, exponential concentration of Lipschitz functions, and the apriori weakest requirement that Lipschitz functions have arbitrarily slow uniform taildecay, are all quantitativ ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
We show that for convex domains in Euclidean space, Cheeger’s isoperimetric inequality, spectral gap of the Neumann Laplacian, exponential concentration of Lipschitz functions, and the apriori weakest requirement that Lipschitz functions have arbitrarily slow uniform taildecay, are all quantitatively equivalent (to within universal constants, independent of the dimension). This substantially extends previous results of Maz’ya, Cheeger, Gromov– Milman, Buser and Ledoux. As an application, we conclude a sharp quantitative stability result for the spectral gap of convex domains under convex perturbations which preserve volume (up to constants) and under maps which are “onaverage ” Lipschitz. We also provide a new characterization (up to constants) of the spectral gap of a convex domain, as one over the square of the average distance from the “worst ” subset having half the measure of the domain. In addition, we easily recover and extend many previously known lower bounds on the spectral gap of convex domains, due to Payne–Weinberger, Li–Yau, Kannan– Lovász–Simonovits, Bobkov and Sodin. The proof involves estimates on the diffusion semigroup following Bakry–Ledoux and a result from Riemannian Geometry on the concavity of the isoperimetric profile. Our results extend to the more general setting of Riemannian manifolds with density which satisfy the CD(0, ∞) curvaturedimension condition of BakryÉmery. 1
Functional inequalities for heavy tails distributions and application to isoperimetry
, 2008
"... Abstract. This paper is devoted to the study of probability measures with heavy tails. Using the Lyapunov function approach we prove that such measures satisfy different kind of functional inequalities such as weak Poincaré and weak Cheeger, weighted Poincaré and weighted Cheeger inequalities and th ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Abstract. This paper is devoted to the study of probability measures with heavy tails. Using the Lyapunov function approach we prove that such measures satisfy different kind of functional inequalities such as weak Poincaré and weak Cheeger, weighted Poincaré and weighted Cheeger inequalities and their dual forms. Proofs are short and we cover very large situations. For product measures onR n we obtain the optimal dimension dependence using the mass transportation method. Then we derive (optimal) isoperimetric inequalities. Finally we deal with spherically symmetric measures. We recover and improve many previous results.
Properties of Isoperimetric, Functional and TransportEntropy Inequalities Via Concentration
, 909
"... Various properties of isoperimetric, functional, TransportEntropy and concentration inequalities are studied on a Riemannian manifold equipped with a measure, whose generalized Ricci curvature is bounded from below. First, stability of these inequalities with respect to perturbation of the measure ..."
Abstract
 Add to MetaCart
Various properties of isoperimetric, functional, TransportEntropy and concentration inequalities are studied on a Riemannian manifold equipped with a measure, whose generalized Ricci curvature is bounded from below. First, stability of these inequalities with respect to perturbation of the measure is obtained. The extent of the perturbation is measured using several different distances between perturbed and original measure, such as a onesided L ∞ bound on the ratio between their densities, Wasserstein distances, and KullbackLeibler divergence. In particular, an extension of the Holley–Stroock perturbation lemma for the logSobolev inequality is obtained. Second, the equivalence of TransportEntropy inequalities with different cost functions is verified, by obtaining a reverse Jensen type inequality. In view of a recent result of Gozlan, this is used to obtain tensorization properties of concentration inequalities with respect to various productmetrics, and the tensorization result for isoperimetric inequalities of Barthe–Cattiaux–Roberto is easily recovered. Some further applications are also described. The main tool used is a previous precise result on the equivalence between concentration and isoperimetric inequalities in the described setting. 1
Isoperimetric and Concentration Inequalities Part I: Equivalence under Curvature Lower Bound
, 2009
"... It is well known that isoperimetric inequalities imply in a very general measuremetricspace setting appropriate concentration inequalities. The former bound the boundary measure of sets as a function of their measure, whereas the latter bound the measure of sets separated from sets having half the ..."
Abstract
 Add to MetaCart
It is well known that isoperimetric inequalities imply in a very general measuremetricspace setting appropriate concentration inequalities. The former bound the boundary measure of sets as a function of their measure, whereas the latter bound the measure of sets separated from sets having half the total measure, as a function of their mutual distance. We show that under a lower bound condition on the Bakry – Émery curvature tensor of a Riemannian manifold equipped with a density, completely general concentration inequalities imply back their isoperimetric counterparts, up to dimension independent bounds. As a corollary, we can recover and extend all previously known (dimension dependent) results by generalizing an isoperimetric inequality of Bobkov, and provide a new proof that under natural convexity assumptions, arbitrarily weak concentration implies a dimension independent linear isoperimetric inequality. Further applications will be described in a subsequent work. Contrary to previous attempts in this direction, our method is entirely geometric, continuing the approach set forth by Gromov and adapted to the manifoldwithdensity setting by Morgan. 1
POINTWISE SYMMETRIZATION INEQUALITIES FOR SOBOLEV FUNCTIONS AND APPLICATIONS
, 908
"... Abstract. We develop a technique to obtain new symmetrization inequalities that provide a unified framework to study Sobolev inequalities, concentration inequalities and sharp integrability of solutions of elliptic equations. ..."
Abstract
 Add to MetaCart
Abstract. We develop a technique to obtain new symmetrization inequalities that provide a unified framework to study Sobolev inequalities, concentration inequalities and sharp integrability of solutions of elliptic equations.