Results 1  10
of
66
Progressive Meshes
"... Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes, challenge rendering performance, transmission bandwidth, and storage capacities. This paper introduces the progressive mesh (PM) representation, a new s ..."
Abstract

Cited by 1112 (11 self)
 Add to MetaCart
Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes, challenge rendering performance, transmission bandwidth, and storage capacities. This paper introduces the progressive mesh (PM) representation, a new scheme for storing and transmitting arbitrary triangle meshes. This efficient, lossless, continuousresolution representation addresses several practical problems in graphics: smooth geomorphing of levelofdetail approximations, progressive transmission, mesh compression, and selective refinement. In addition, we present a new mesh simplification procedure for constructing a PM representation from an arbitrary mesh. The goal of this optimization procedure is to preserve not just the geometry of the original mesh, but more importantly its overall appearance as defined by its discrete and scalar appearance attributes such as material identifiers, color values, normals, and texture coordinates. We demonstrate construction of the PM representation and its applications using several practical models.
Edgebreaker: Connectivity compression for triangle meshes
 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
, 1999
"... Edgebreaker is a simple scheme for compressing the triangle/vertex incidence graphs (sometimes called connectivity or topology) of threedimensional triangle meshes. Edgebreaker improves upon the worst case storage required by previously reported schemes, most of which require O(nlogn) bits to sto ..."
Abstract

Cited by 265 (22 self)
 Add to MetaCart
Edgebreaker is a simple scheme for compressing the triangle/vertex incidence graphs (sometimes called connectivity or topology) of threedimensional triangle meshes. Edgebreaker improves upon the worst case storage required by previously reported schemes, most of which require O(nlogn) bits to store the incidence graph of a mesh of n triangles. Edgebreaker requires only 2n bits or less for simple meshes and can also support fully general meshes by using additional storage per handle and hole. Edgebreaker's compression and decompression processes perform the same traversal of the mesh from one triangle to an adjacent one. At each stage, compression produces an opcode describing the topological relation between the current triangle and the boundary of the remaining part of the mesh. Decompression uses these opcodes to reconstruct the entire incidence graph. Because Edgebreaker's compression and decompression are independent of the vertex locations, they may be combined with a variety of vertexcompressing techniques that exploit topological information about the mesh to better estimate vertex locations. Edgebreaker may be used to compress the connectivity of an entire mesh bounding a 3D polyhedron or the connectivity of a triangulated surface patch whose boundary needs not be encoded. Its superior compression capabilities, the simplicity of its implementation, and its versatility make Edgebreaker particularly suitable for the emerging 3D data exchange standards for interactive graphic applications. The paper also offers a comparative survey of the rapidly growing field of geometric compression.
Subgraph Isomorphism in Planar Graphs and Related Problems
, 1999
"... We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to ..."
Abstract

Cited by 113 (1 self)
 Add to MetaCart
We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to solve other planar graph problems including connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths.
Face Fixer: Compressing polygon meshes with properties
 In SIGGRAPH’00 Conference Proceedings
, 2000
"... Most schemes to compress the topology of a surface mesh have been developed for the lowest common denominator: triangulated meshes. We propose a scheme that handles the topology of arbitrary polygon meshes. It encodes meshes directly in their polygonal representation and extends to capture face grou ..."
Abstract

Cited by 88 (18 self)
 Add to MetaCart
Most schemes to compress the topology of a surface mesh have been developed for the lowest common denominator: triangulated meshes. We propose a scheme that handles the topology of arbitrary polygon meshes. It encodes meshes directly in their polygonal representation and extends to capture face groupings in a natural way. Avoiding the triangulation step we reduce the storage costs for typical polygon models that have group structures and property data.
Clique Partitions, Graph Compression and Speedingup Algorithms
 Journal of Computer and System Sciences
, 1991
"... We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of s ..."
Abstract

Cited by 74 (3 self)
 Add to MetaCart
We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of small total order in a sufficiently dense graph and devise an efficient algorithm to compute such a partition. It turns out that our algorithm exhibits a tradeoff between the total order of the partition and the running time. Next, we define the notion of a compression of a graph G and use the result on graph partitioning to efficiently compute an optimal compression for graphs of a given size. An interesting application of the graph compression result arises from the fact that several graph algorithms can be adapted to work with the compressed representation of the input graph, thereby improving the bound on their running times, particularly on dense graphs. This makes use of the tradeoff ...
Recent advances in compression of 3D meshes
 In Advances in Multiresolution for Geometric Modelling
, 2003
"... Summary. 3D meshes are widely used in graphic and simulation applications for approximating 3D objects. When representing complex shapes in a raw data format, meshes consume a large amount of space. Applications calling for compact storage and fast transmission of 3D meshes have motivated the multit ..."
Abstract

Cited by 70 (3 self)
 Add to MetaCart
Summary. 3D meshes are widely used in graphic and simulation applications for approximating 3D objects. When representing complex shapes in a raw data format, meshes consume a large amount of space. Applications calling for compact storage and fast transmission of 3D meshes have motivated the multitude of algorithms developed to efficiently compress these datasets. In this paper we survey recent developments in compression of 3D surface meshes. We survey the main ideas and intuition behind techniques for singlerate and progressive mesh coding. Where possible, we discuss the theoretical results obtained for asymptotic behavior or optimality of the approach. We also list some open questions and directions for future research. 1
Guaranteed 3.67V bit encoding of planar triangle graphs
 11TH CANADIAN CONFERENCE ON COMPUTATIONAL GEOMETRY (CCCG'’99
, 1999
"... We present a new representation that is guaranteed to encode any planar triangle graph of V vertices in less than 3.67V bits. Our code improves on all prior solutions to this well studied problem and lies within 13% of the theoretical lower limit of the worst case guaranteed bound. It is based on a ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
We present a new representation that is guaranteed to encode any planar triangle graph of V vertices in less than 3.67V bits. Our code improves on all prior solutions to this well studied problem and lies within 13% of the theoretical lower limit of the worst case guaranteed bound. It is based on a new encoding of the CLERS string produced by Rossignacs Edgebreaker compression [Rossignac99]. The elegance and simplicity of this technique makes it suitable for a variety of 2D and 3D triangle mesh compression applications. Simple and fast compression/decompression algorithms with linear time and space complexity are available.
Geometry Coding and VRML
, 1998
"... The Virtual Reality Modeling Language (VRML) is rapidly becoming the standard file format for transmitting 3D virtual worlds across the Internet. Static and dynamic descriptions of 3D objects, multimedia content, and a variety of hyperlinks can be represented in VRML files. Both VRML browsers and au ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
The Virtual Reality Modeling Language (VRML) is rapidly becoming the standard file format for transmitting 3D virtual worlds across the Internet. Static and dynamic descriptions of 3D objects, multimedia content, and a variety of hyperlinks can be represented in VRML files. Both VRML browsers and authoring tools for the creation of VRML files are widely available for several different platforms. In this paper we describe the topologicallyassisted geometric compression technology included in our proposal for the VRML Compressed Binary Format. This technology produces significant reduction of file sizes and, subsequently, of the time required for transmission of such files across the Internet. Compression ratios of up to 50:1 or more are achieved for large models. The proposal also includes combines a binary encoding to create compact, rapidlyparsable binary VRML files. The proposal is currently being evaluated by the Compressed Binary Format Working Group of the VRML Consortium as a ...
NearOptimal Connectivity Encoding of 2Manifold Polygon Meshes
, 2002
"... ... this paper we introduce a connectivity encoding method which extends these ideas to 2manifold meshes consisting of faces with arbitrary degree. The encoding algorithm exploits duality by applying valence enumeration to both the primal and dual mesh in a symmetric fashion. It generates two sequen ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
... this paper we introduce a connectivity encoding method which extends these ideas to 2manifold meshes consisting of faces with arbitrary degree. The encoding algorithm exploits duality by applying valence enumeration to both the primal and dual mesh in a symmetric fashion. It generates two sequences of symbols, vertex valences and face degrees, and encodes them separately using two contextbased arithmetic coders. This allows us to exploit vertex and/or face regularity if present. When the mesh exhibits perfect face regularity (e.g., a pure triangle or quad mesh) and/or perfect vertex regularity (valence six or four respectively) the corresponding bit rate vanishes to zero asymptotically. For triangle meshes, our technique is equivalent to earlier valence driven approaches. We report compression results for a corpus of standard meshes. In all cases we are able to show coding gains over earlier coders, sometimes as large as 50%. Remarkably, we even slightly gain over coders specialized to triangle or quad meshes. A theoretical analysis reveals that our approach is nearoptimal as we achieve the Tutte entropy bound for arbitrary planar graphs of 2 bits per edge in the worst case.
Short Encodings of Planar Graphs and Maps
 Discrete Applied Mathematics
, 1993
"... We discuss spaceefficient encoding schemes for planar graphs and maps. Our results improve on the constants of previous schemes and can be achieved with simple encoding algorithms. They are nearoptimal in number of bits per edge. 1 Introduction In this paper we discuss spaceefficient binary enco ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
We discuss spaceefficient encoding schemes for planar graphs and maps. Our results improve on the constants of previous schemes and can be achieved with simple encoding algorithms. They are nearoptimal in number of bits per edge. 1 Introduction In this paper we discuss spaceefficient binary encoding schemes for several classes of unlabeled connected planar graphs and maps. In encoding a graph we must encode the incidences among vertexes and edges. By maps we understand topological equivalence classes of planar embeddings of planar graphs. In encoding a map we are required to encode the topology of the embedding i.e., incidences among faces, edges, and vertexes, as well as the graph. Each map is an embedding of a unique graph, but a given graph may have multiple embeddings. Hence maps must require more bits to encode than graphs in some average sense. There are a number of recent results on spaceefficient encoding. A standard adjacency list encoding of an unlabeled graph G requires...