Results 1  10
of
75
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 210 (13 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
The Impact of Jumps in Volatility and Returns
 Journal of Finance
, 2002
"... This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq ..."
Abstract

Cited by 205 (11 self)
 Add to MetaCart
This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq 100 index returns. Estimates of jump times, jump sizes and volatility are particularly useful for identifying the effects of these factors during periods of market stress, such as those in 1987, 1997 and 1998.
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 190 (4 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
The Dynamics of Stochastic Volatility: Evidence from Underlying and Option Markets
, 2000
"... This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultane ..."
Abstract

Cited by 129 (3 self)
 Add to MetaCart
This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultaneously. I conclude that the square root stochastic variance model of Heston (1993) and others is incapable of generating realistic returns behavior and find that the data are more accurately represented by a stochastic variance model in the CEV class or a model that allows the price and variance processes to have a timevarying correlation. Specifically, I find that as the level of market variance increases, the volatility of market variance increases rapidly and the correlation between the price and variance processes becomes substantially more negative. The heightened heteroskedasticity in market variance that results generates realistic crash probabilities and dynamics and causes returns to display values of skewness and kurtosis much more consistent with their sample values. While the model dramatically improves the fit of options prices relative to the square root process, it falls short of explaining the implied volatility smile for shortdated options.
There is a riskreturn tradeoff after all
, 2004
"... This paper studies the intertemporal relation between the conditional mean and the conditional variance of the aggregate stock market return. We introduce a new estimator that forecasts monthly variance with past daily squared returns, the mixed data sampling (or MIDAS) approach. Using MIDAS, we fin ..."
Abstract

Cited by 126 (22 self)
 Add to MetaCart
This paper studies the intertemporal relation between the conditional mean and the conditional variance of the aggregate stock market return. We introduce a new estimator that forecasts monthly variance with past daily squared returns, the mixed data sampling (or MIDAS) approach. Using MIDAS, we find a significantly positive relation between risk and return in the stock market. This finding is robust in subsamples, to asymmetric specifications of the variance process and to controlling for variables associated with the business cycle. We compare the MIDAS results with tests of the intertemporal capital asset pricing model based on alternative conditional variance specifications and explain the conflicting results in the literature. Finally, we offer new insights about the dynamics of conditional variance.
Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets
, 2003
"... ..."
(Show Context)
Numerical Techniques for Maximum Likelihood Estimation of ContinuousTime Diffusion Processes
 JOURNAL OF BUSINESS AND ECONOMIC STATISTICS
, 2001
"... Stochastic differential equations often provide a convenient way to describe the dynamics of economic and financial data, and a great deal of effort has been expended searching for efficient ways to estimate models based on them. Maximum likelihood is typically the estimator of choice; however, sinc ..."
Abstract

Cited by 119 (0 self)
 Add to MetaCart
Stochastic differential equations often provide a convenient way to describe the dynamics of economic and financial data, and a great deal of effort has been expended searching for efficient ways to estimate models based on them. Maximum likelihood is typically the estimator of choice; however, since the transition density is generally unknown, one is forced to approximate it. The simulationbased approach suggested by Pedersen (1995) has great theoretical appeal, but previously available implementations have been computationally costly. We examine a variety of numerical techniques designed to improve the performance of this approach. Synthetic data generated by a CIR model with parameters calibrated to match monthly observations of the U.S. shortterm interest rate are used as a test case. Since the likelihood function of this process is known, the quality of the approximations can be easily evaluated. On data sets with 1000 observations, we are able to approximate the maximum likelihood estimator with negligible error in well under one minute. This represents something on the order of a 10,000fold reduction in computational effort as compared to implementations without these enhancements. With other parameter settings designed to stress the methodology, performance remains strong. These ideas are easily generalized to multivariate settings and (with some additional work) to latent variable models. To illustrate, we estimate a simple stochastic volatility model of the U.S. shortterm interest rate.
Maximum likelihood estimation for stochastic volatility models
 JOURNAL OF FINANCIAL ECONOMICS
, 2007
"... We develop and implement a method for maximum likelihood estimation in closedform of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood procedure ..."
Abstract

Cited by 99 (3 self)
 Add to MetaCart
We develop and implement a method for maximum likelihood estimation in closedform of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood procedure where the volatility state is replaced by proxies based on the implied volatility of a shortdated atthemoney option. The approximation results in a small loss of accuracy relative to the standard errors due to sampling noise. We apply this method to market prices of index options for several stochastic volatility models, and compare the characteristics of the estimated models. The evidence for a general CEV model, which nests both the affine Heston model and a GARCH model, suggests that the elasticity of variance of volatility lies between that assumed by the two nested models.
Estimating Stochastic Volatility Diffusion Using Conditional Moments of Integrated Volatility
, 2000
"... We exploit the distributional information contained in highfrequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the integrated volatility, which ..."
Abstract

Cited by 95 (8 self)
 Add to MetaCart
We exploit the distributional information contained in highfrequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the integrated volatility, which is effectively approximated by the quadratic variation of the process. We successfully implement the resulting GMM estimator with highfrequency fiveminute foreign exchange and equity index returns. Our simulation evidence and actual empirical results indicate that the method is very reliable and accurate. The computational speed of the procedure compares very favorably to other existing estimation methods in the literature.
Continuoustime methods in finance: A review and an assessment
 Journal of Finance
, 2000
"... I survey and assess the development of continuoustime methods in finance during the last 30 years. The subperiod 1969 to 1980 saw a dizzying pace of development with seminal ideas in derivatives securities pricing, term structure theory, asset pricing, and optimal consumption and portfolio choices. ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
I survey and assess the development of continuoustime methods in finance during the last 30 years. The subperiod 1969 to 1980 saw a dizzying pace of development with seminal ideas in derivatives securities pricing, term structure theory, asset pricing, and optimal consumption and portfolio choices. During the period 1981 to 1999 the theory has been extended and modified to better explain empirical regularities in various subfields of finance. This latter subperiod has seen significant progress in econometric theory, computational and estimation methods to test and implement continuoustime models. Capital market frictions and bargaining issues are being increasingly incorporated in continuoustime theory. THE ROOTS OF MODERN CONTINUOUSTIME METHODS in finance can be traced back to the seminal contributions of Merton ~1969, 1971, 1973b! in the late 1960s and early 1970s. Merton ~1969! pioneered the use of continuoustime modeling in financial economics by formulating the intertemporal consumption and portfolio choice problem of an investor in a stochastic dynamic programming setting.