Results 1  10
of
40
Markov Logic Networks
 Machine Learning
, 2006
"... Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects ..."
Abstract

Cited by 569 (34 self)
 Add to MetaCart
Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a firstorder formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudolikelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a realworld database and knowledge base in a university domain illustrate the promise of this approach.
Lifted firstorder probabilistic inference
 In Proceedings of IJCAI05, 19th International Joint Conference on Artificial Intelligence
, 2005
"... Most probabilistic inference algorithms are specified and processed on a propositional level. In the last decade, many proposals for algorithms accepting firstorder specifications have been presented, but in the inference stage they still operate on a mostly propositional representation level. [Poo ..."
Abstract

Cited by 88 (7 self)
 Add to MetaCart
Most probabilistic inference algorithms are specified and processed on a propositional level. In the last decade, many proposals for algorithms accepting firstorder specifications have been presented, but in the inference stage they still operate on a mostly propositional representation level. [Poole, 2003] presented a method to perform inference directly on the firstorder level, but this method is limited to special cases. In this paper we present the first exact inference algorithm that operates directly on a firstorder level, and that can be applied to any firstorder model (specified in a language that generalizes undirected graphical models). Our experiments show superior performance in comparison with propositional exact inference. 1
Markov Logic: A Unifying Framework for Statistical Relational Learning
 PROCEEDINGS OF THE ICML2004 WORKSHOP ON STATISTICAL RELATIONAL LEARNING AND ITS CONNECTIONS TO OTHER FIELDS
, 2004
"... Interest in statistical relational learning (SRL) has grown rapidly in recent years. Several key SRL tasks have been identified, and a large number of approaches have been proposed. Increasingly, a ..."
Abstract

Cited by 75 (0 self)
 Add to MetaCart
Interest in statistical relational learning (SRL) has grown rapidly in recent years. Several key SRL tasks have been identified, and a large number of approaches have been proposed. Increasingly, a
Relational Data Mining with Inductive Logic Programming for Link Discovery
 In Proceedings of the National Science Foundation Workshop on Next Generation Data Mining
, 2002
"... Link discovery (LD) is an important task in data mining for counterterrorism and is the focus of DARPA's Evidence Extraction and Link Discovery (EELD) research program. Link discovery concerns the identification of complex relational patterns that indicate potentially threatening activities in larg ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
Link discovery (LD) is an important task in data mining for counterterrorism and is the focus of DARPA's Evidence Extraction and Link Discovery (EELD) research program. Link discovery concerns the identification of complex relational patterns that indicate potentially threatening activities in large amounts of relational data. Most datamining methods assume data is in the form of a featurevector (a single relational table) and cannot handle multirelational data. Inductive logic programming is a form of relational data mining that discovers rules in firstorder logic from multirelational data. This paper discusses the application of ILP to learning patterns for link discovery.
Probabilistic Logic Learning
 ACMSIGKDD Explorations: Special issue on MultiRelational Data Mining
, 2004
"... The past few years have witnessed an significant interest in probabilistic logic learning, i.e. in research lying at the intersection of probabilistic reasoning, logical representations, and machine learning. A rich variety of di#erent formalisms and learning techniques have been developed. This pap ..."
Abstract

Cited by 34 (8 self)
 Add to MetaCart
The past few years have witnessed an significant interest in probabilistic logic learning, i.e. in research lying at the intersection of probabilistic reasoning, logical representations, and machine learning. A rich variety of di#erent formalisms and learning techniques have been developed. This paper provides an introductory survey and overview of the stateof theart in probabilistic logic learning through the identification of a number of important probabilistic, logical and learning concepts.
Logical Bayesian Networks and their relation to other probabilistic logical models
 In Proceedings of 15th International Conference on Inductive Logic Pogramming (ILP05), volume 3625 of Lecture Notes in Artificial Intelligence
, 2005
"... We review Logical Bayesian Networks, a language for probabilistic logical modelling, and discuss its relation to Probabilistic Relational Models and Bayesian Logic Programs. 1 Probabilistic Logical Models Probabilistic logical models are models combining aspects of probability theory with aspects of ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
We review Logical Bayesian Networks, a language for probabilistic logical modelling, and discuss its relation to Probabilistic Relational Models and Bayesian Logic Programs. 1 Probabilistic Logical Models Probabilistic logical models are models combining aspects of probability theory with aspects of Logic Programming, firstorder logic or relational languages. Recently a variety of languages to describe such models has been introduced. For some languages techniques exist to learn such models from data. Two examples are Probabilistic Relational Models (PRMs) [4] and Bayesian Logic Programs (BLPs) [5]. These two languages are probably the most popular and wellknown in the Relational Data Mining community. We introduce a new language, Logical Bayesian Networks (LBNs) [2], that is strongly related to PRMs and BLPs yet solves some of their problems with respect to knowledge representation (related to expressiveness and intuitiveness). PRMs, BLPs and LBNs all follow the principle of Knowledge Based Model Construction: they offer a language that can be used to specify general probabilistic logical knowledge and they provide a methodology to construct a propositional model based on this knowledge when given a specific
View learning for statistical relational learning: With an application to mammography
 Proceeding of the 19th International Joint Conference on Artificial Intelligence
, 2005
"... Statistical relational learning (SRL) constructs probabilistic models from relational databases. A key capability of SRL is the learning of arcs (in the Bayes net sense) connecting entries in different rows of a relational table, or in different tables. Nevertheless, SRL approaches currently are con ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
Statistical relational learning (SRL) constructs probabilistic models from relational databases. A key capability of SRL is the learning of arcs (in the Bayes net sense) connecting entries in different rows of a relational table, or in different tables. Nevertheless, SRL approaches currently are constrained to use the existing database schema. For many database applications, users find it profitable to define alternative “views ” of the database, in effect defining new fields or tables. Such new fields or tables can also be highly useful in learning. We provide SRL with the capability of learning new views. 1
Learning logic programs with annotated disjunctions
 14th Internation Conference on Inductive Logic Programming (ILP2004
, 2004
"... Abstract. Logic Programs with Annotated Disjunctions (LPADs) provide a simple and elegant framework for integrating probabilistic reasoning and logic programming. In this paper we propose an algorithm for learning LPADs. The learning problem we consider consists in starting from a sets of interpreta ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Abstract. Logic Programs with Annotated Disjunctions (LPADs) provide a simple and elegant framework for integrating probabilistic reasoning and logic programming. In this paper we propose an algorithm for learning LPADs. The learning problem we consider consists in starting from a sets of interpretations annotated with their probability and finding one (or more) LPAD that assign to each interpretation the associated probability. The learning algorithm first finds all the disjunctive clauses that are true in all interpretations, then it assigns to each disjunct in the head a probability and finally decides how to combine the clauses to form an LPAD by solving a constraint satisfaction problem. We show that the learning algorithm is correct and complete. 1
CPlogic: A Language of Causal Probabilistic Events and Its Relation to Logic Programming
"... We examine the relation between constructive processes and the concept of causality. We observe that causality has an inherent dynamic aspect, i.e., that, in essence, causal information concerns the evolution of a domain over time. Motivated by this observation, we construct a new representation lan ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We examine the relation between constructive processes and the concept of causality. We observe that causality has an inherent dynamic aspect, i.e., that, in essence, causal information concerns the evolution of a domain over time. Motivated by this observation, we construct a new representation language for causal knowledge, whose semantics is defined explicitly in terms of constructive processes. This is done in a probabilistic context, where the basic steps that make up the process are allowed to have nondeterministic effects. We then show that a theory in this language defines a unique probability distribution over the possible outcomes of such a process. This result offers an appealing explanation for the usefulness of causal information and links our explicitly dynamic approach to more static causal probabilistic modeling languages, such as Bayesian networks. We also show that this language, which we have constructed to be a natural formalization of a certain kind of causal statements, is closely related to logic programming. This result demonstrates that, under an appropriate formal semantics, a rule of a normal, a disjunctive or a certain kind of probabilistic logic program can be interpreted as a description of a causal event.
Structured machine learning: the next ten years
, 2008
"... The field of inductive logic programming (ILP) has made steady progress, since the first ILP workshop in 1991, based on a balance of developments in theory, implementations and applications. More recently there has been an increased emphasis on Probabilistic ILP and the related fields of Statistic ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
The field of inductive logic programming (ILP) has made steady progress, since the first ILP workshop in 1991, based on a balance of developments in theory, implementations and applications. More recently there has been an increased emphasis on Probabilistic ILP and the related fields of Statistical Relational Learning (SRL) and Structured Prediction. The goal of the current paper is to consider these emerging trends and chart out the strategic directions and open problems for the broader area of structured machine learning for the next 10 years.