Results 1  10
of
69
Spaces over a Category and Assembly Maps in Isomorphism Conjectures in Kand LTheory
"... : We give a unified approach to the Isomorphism Conjecture of Farrell and Jones on the algebraic K and Ltheory of integral group rings and to the BaumConnes Conjecture on the topological Ktheory of reduced group C algebras. The approach is through spectra over the orbit category of a discrete ..."
Abstract

Cited by 49 (12 self)
 Add to MetaCart
: We give a unified approach to the Isomorphism Conjecture of Farrell and Jones on the algebraic K and Ltheory of integral group rings and to the BaumConnes Conjecture on the topological Ktheory of reduced group C algebras. The approach is through spectra over the orbit category of a discrete group G. We give several points of view on the assembly map for a family of subgroups and describe such assembly maps by a universal property generalizing the results of Weiss and Williams to the equivariant setting. The main tools are spaces and spectra over a category and the study of the associated generalized homology and cohomology theories and homotopy limits. Key words: Algebraic K and Ltheory, BaumConnes Conjecture, assembly maps, spaces and spectra over a category AMSclassification number: 57 Glen Bredon [5] introduced the orbit category Or(G) of a group G. Objects are homogeneous spaces G=H, considered as left Gsets, and morphisms are Gmaps. This is a useful construct for o...
Higher topos theory
, 2006
"... Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain com ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain complex of Gvalued singular cochains on X. An alternative is to regard H n (•, G) as a representable functor on the homotopy category
Persistent Homology  a Survey
 CONTEMPORARY MATHEMATICS
"... Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It casts the multiscale organization we frequently observe in nature into a mathematical formalism. Here we give a record of the short history of persistent homology and present its basic concepts. ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It casts the multiscale organization we frequently observe in nature into a mathematical formalism. Here we give a record of the short history of persistent homology and present its basic concepts. Besides the mathematics we focus on algorithms and mention the various connections to applications, including to biomolecules, biological networks, data analysis, and geometric modeling.
Floer's Infinite Dimensional Morse Theory And Homotopy Theory
, 1996
"... This paper is a progress report on our efforts to understand the homotopy theory underlying Floer homology; its objectives are as follows: ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
This paper is a progress report on our efforts to understand the homotopy theory underlying Floer homology; its objectives are as follows:
From loop groups to 2groups
 HHA
"... We describe an interesting relation between Lie 2algebras, the Kac– Moody central extensions of loop groups, and the group String(n). A Lie 2algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the ‘Jacobiator’. Similarly, a Lie 2gr ..."
Abstract

Cited by 23 (11 self)
 Add to MetaCart
We describe an interesting relation between Lie 2algebras, the Kac– Moody central extensions of loop groups, and the group String(n). A Lie 2algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the ‘Jacobiator’. Similarly, a Lie 2group is a categorified version of a Lie group. If G is a simplyconnected compact simple Lie group, there is a 1parameter family of Lie 2algebras gk each having g as its Lie algebra of objects, but with a Jacobiator built from the canonical 3form on G. There appears to be no Lie 2group having gk as its Lie 2algebra, except when k = 0. Here, however, we construct for integral k an infinitedimensional Lie 2group PkG whose Lie 2algebra is equivalent to gk. The objects of PkG are based paths in G, while the automorphisms of any object form the levelk Kac– Moody central extension of the loop group ΩG. This 2group is closely related to the kth power of the canonical gerbe over G. Its nerve gives a topological group PkG  that is an extension of G by K(Z, 2). When k = ±1, PkG  can also be obtained by killing the third homotopy group of G. Thus, when G = Spin(n), PkG  is none other than String(n). 1 1
A Cellular Nerve for Higher Categories
, 2002
"... ... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there exists a dense subcategory YA of the category of Aalgebras for each ooperad A in Batanin’s sense. Whenever A is contractible, the resulting homotopy category of Aalgebras (i.e. weak ocategories) is
Homotopy colimits  comparison lemmas for combinatorial applications
, 1997
"... We provide a "toolkit " of basic lemmas for the comparison of homotopy types of homotopy colimits of diagrams of spaces over small categories. We show how this toolkit can be used on quite different fields of applications. We demonstrate this with respect to 1. Bjorner's "Generalized Homot ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
We provide a "toolkit " of basic lemmas for the comparison of homotopy types of homotopy colimits of diagrams of spaces over small categories. We show how this toolkit can be used on quite different fields of applications. We demonstrate this with respect to 1. Bjorner's "Generalized Homotopy Complementation Formula" [4], 2. the topology of toric varieties, 3. the study of homotopy types of arrangements of subspaces, 4. the analysis of homotopy types of subgroup complexes.