Results 1  10
of
34
Compass Routing on Geometric Networks
 IN PROC. 11 TH CANADIAN CONFERENCE ON COMPUTATIONAL GEOMETRY
, 1999
"... In this paper we study local routing algorithms on geometric networks. Formally speaking, suppose that we want to travel from a vertex s to a vertex t of a geometric network. A routing algorithm is called a local routing algorithm if it satisfies the following conditions: ..."
Abstract

Cited by 266 (14 self)
 Add to MetaCart
In this paper we study local routing algorithms on geometric networks. Formally speaking, suppose that we want to travel from a vertex s to a vertex t of a geometric network. A routing algorithm is called a local routing algorithm if it satisfies the following conditions:
Subgraph Isomorphism in Planar Graphs and Related Problems
, 1999
"... We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to ..."
Abstract

Cited by 113 (1 self)
 Add to MetaCart
We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small treewidth, and applying dynamic programming within each piece. The same methods can be used to solve other planar graph problems including connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths.
Compact Routing with Minimum Stretch
 Journal of Algorithms
"... We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all node ..."
Abstract

Cited by 112 (5 self)
 Add to MetaCart
We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all nodes in an arbitrary weighted undirected network. This answers an open question of Gavoille and Gengler who showed that any universal compact routing algorithm with maximum stretch strictly less than 3 must use\Omega\Gamma n) local space at some vertex. 1 Introduction Let G = (V; E) with jV j = n be a labeled undirected network. Assuming that a positive cost, or distance is assigned with each edge, the stretch of path p(u; v) from node u to node v is defined as jp(u;v)j jd(u;v)j , where jd(u; v)j is the length of the shortest u \Gamma v path. The approximate allpairs shortest path problem involves a tradeoff of stretch against time short paths with stretch bounded by a constant are com...
Compact and Localized Distributed Data Structures
 JOURNAL OF DISTRIBUTED COMPUTING
, 2001
"... This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sou ..."
Abstract

Cited by 72 (25 self)
 Add to MetaCart
This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sought information involves only a small and local set of entities. In contrast, localized data representation schemes are based on breaking the information into small local pieces, or labels, selected in a way that allows one to infer information regarding a small set of entities directly from their labels, without using any additional (global) information. The survey focuses on combinatorial and algorithmic techniques, and covers complexity results on various applications, including compact localized schemes for message routing in communication networks, and adjacency and distance labeling schemes.
On Hierarchical Routing in Doubling Metrics
, 2005
"... We study the problem of routing in doubling metrics, and show how to perform hierarchical routing in such metrics with small stretch and compact routing tables (i.e., with small amount of routing information stored at each vertex). We say that a metric (X, d) has doubling dimension dim(X) at most α ..."
Abstract

Cited by 58 (8 self)
 Add to MetaCart
We study the problem of routing in doubling metrics, and show how to perform hierarchical routing in such metrics with small stretch and compact routing tables (i.e., with small amount of routing information stored at each vertex). We say that a metric (X, d) has doubling dimension dim(X) at most α if every set of diameter D can be covered by 2 α sets of diameter D/2. (A doubling metric is one whose doubling dimension dim(X) is a constant.) We show how to perform (1 + τ)stretch routing on metrics for any 0 < τ ≤ 1 with routing tables of size at most (α/τ) O(α) log 2 ∆ bits with only (α/τ) O(α) log ∆ entries, where ∆ is the diameter of the graph; hence the number of routing table entries is just τ −O(1) log ∆ for doubling metrics. These results extend and improve on those of Talwar (2004). We also give better constructions of sparse spanners for doubling metrics than those obtained from the routing tables above; for τ> 0, we give algorithms to construct (1 + τ)stretch spanners for a metric (X, d) with maximum degree at most (2 + 1/τ) O(dim(X)) , matching the results of Das et al. for Euclidean metrics.
Approximate Distance Labeling Schemes
, 2000
"... We consider the problem of labeling the nodes of an nnode graph G with short labels in such a way that the distance between any two nodes u; v of G can be approximated eciently (in constant time) by merely inspecting the labels of u and v, without using any other information. We develop such con ..."
Abstract

Cited by 46 (18 self)
 Add to MetaCart
We consider the problem of labeling the nodes of an nnode graph G with short labels in such a way that the distance between any two nodes u; v of G can be approximated eciently (in constant time) by merely inspecting the labels of u and v, without using any other information. We develop such constant approximate distance labeling schemes for the classes of trees, bounded treewidth graphs, planar graphs, kchordal graphs, and graphs with a dominating pair (including for instance interval, permutation, and ATfree graphs). We also show lower bounds, and prove that most of our schemes are optimal in length of labels generated and in the quality of the approximation, leaving some open problems.
Competitive Online Routing in Geometric Graphs
 Theoretical Computer Science
, 2001
"... We consider online routing algorithms for finding paths between the vertices of plane graphs. ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
We consider online routing algorithms for finding paths between the vertices of plane graphs.
The Complexity of Interval Routing on Random Graphs
 THE COMPUTER JOURNAL
, 1995
"... Several methods exist for routing messages in a network without using complete routing tables (compact routing). In kinterval routing schemes (kIR.S), links carry up to k intervals each. A message is routed over certain link if its destination belongs to one of the intervals of the link. We giv ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
Several methods exist for routing messages in a network without using complete routing tables (compact routing). In kinterval routing schemes (kIR.S), links carry up to k intervals each. A message is routed over certain link if its destination belongs to one of the intervals of the link. We give some results for the necessary value of k in order to achieve shortest path routing. Even though for very structured networks low values of suce, we show that for 'general graphs' interval routing cannot significantly reduce the spacerequirements for shortest path routing. In particular we show that for suitably large n, there are suitable values of p such that for randomly chosen graphs G 6 ,p the following holds, with high probability: if G admits an optimal kIIS, then k = The result is obtained by means of a novel matrix representation for the shortest paths in a network.
Compact Routing Tables for Graphs of Bounded Genus
, 2000
"... This paper deals with compact shortest path routing tables on weighted graphs with n nodes. For planar graphs we show how to construct in linear time shortest path routing tables that require 8n + o(n) bits per node, and O(log 2+ n) bitoperations per node to extract the route, for any constant > 0. ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
This paper deals with compact shortest path routing tables on weighted graphs with n nodes. For planar graphs we show how to construct in linear time shortest path routing tables that require 8n + o(n) bits per node, and O(log 2+ n) bitoperations per node to extract the route, for any constant > 0. We obtain the same bounds for graphs of crossingedge number bounded by o(n= log n), and we generalize for graphs of genus bounded by > 0 yielding a size of n log +O(n) bits per node. Actually we prove a sharp upper bound of 2n log k +O(n) for graphs of pagenumber k, and a lower bound of n log k o(n log k) bits. These results are obtained by the use of dominating sets, compact coding of noncrossing partitions, and kpage representation of graphs.