Results 1  10
of
43
A characterization of the Anderson metalinsulator transport transition
 Duke Math. J
"... We investigate the Anderson metalinsulator transition for random Schrödinger operators. We define the strong... ..."
Abstract

Cited by 41 (17 self)
 Add to MetaCart
We investigate the Anderson metalinsulator transition for random Schrödinger operators. We define the strong...
Explicit Finite Volume Criteria For Localization In Continuous Random Media And Applications
 GEOM. FUNCT. ANAL
, 2003
"... We give finite volume criteria for localization of quantum or classical waves in continuous random media. We provide explicit conditions, depending on the parameters of the model, for starting the bootstrap multiscale analysis. A simple application yields localization for Anderson Hamiltonians on th ..."
Abstract

Cited by 22 (11 self)
 Add to MetaCart
We give finite volume criteria for localization of quantum or classical waves in continuous random media. We provide explicit conditions, depending on the parameters of the model, for starting the bootstrap multiscale analysis. A simple application yields localization for Anderson Hamiltonians on the continuum at the bottom of the spectrum in an interval of size O() for large , where stands for the disorder parameter. A more sophisticated application proves localization for twodimensional random Schrödinger operators in a constant magnetic field (random Landau Hamiltonians) up to a distance O( B ) from the Landau levels, where B is the strength of the magnetic field.
Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials, Rev
 Math. Phys
"... The object of the present study is the integrated density of states of a quantum particle in multidimensional Euclidean space which is characterized by a Schrödinger operator with a constant magnetic field and a random potential which may be unbounded from above and from below. For an ergodic rando ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
The object of the present study is the integrated density of states of a quantum particle in multidimensional Euclidean space which is characterized by a Schrödinger operator with a constant magnetic field and a random potential which may be unbounded from above and from below. For an ergodic random potential satisfying a simple moment condition, we give a detailed proof that the infinitevolume limits of spatial eigenvalue concentrations of finitevolume operators with different boundary conditions exist almost surely. Since all these limits are shown to coincide with the expectation of the trace of the spatially localized spectral family of the infinitevolume operator, the integrated density of states is almost surely nonrandom and independent of the chosen boundary condition. Our proof of the
The integrated density of states for random Schrödinger operators
"... We survey some aspects of the theory of the integrated density of states (IDS) of random Schrödinger operators. The first part motivates the problem and introduces the relevant models as well as quantities of interest. The proof of the existence of this interesting quantity, the IDS, is discussed i ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
We survey some aspects of the theory of the integrated density of states (IDS) of random Schrödinger operators. The first part motivates the problem and introduces the relevant models as well as quantities of interest. The proof of the existence of this interesting quantity, the IDS, is discussed in the second section. One central topic of this survey is the asymptotic behavior of the integrated density of states at the boundary of the spectrum. In particular, we are interested in Lifshitz tails and the occurrence of a classical and a quantum regime. In the last section we discuss regularity properties of the IDS. Our emphasis is on the discussion of fundamental problems and central ideas to handle them. Finally, we discuss further developments and problems
Weak Disorder Localization And Lifshitz Tails: Continuous Hamiltonians
 Ann. Henri Poincaré
"... This paper is devoted to the study of band edge localization for continuous random Schrödinger operators with weak random perturbations. We prove that, in the weak disorder regime, small, the spectrum in intervals of size at a nondegenerate simple band edge is exponentially and dynamically localize ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
This paper is devoted to the study of band edge localization for continuous random Schrödinger operators with weak random perturbations. We prove that, in the weak disorder regime, small, the spectrum in intervals of size at a nondegenerate simple band edge is exponentially and dynamically localized. Upper bounds on the localization length in these energy regions are also obtained. Our results rely on the analysis of Lifshitz tails when the disorder is small; the single site potential need not be of fixed sign.
Localisation for Random Perturbations of Periodic Schrödinger Operators with Regular Floquet Eigenvalues
, 2000
"... We prove a localisation theorem for continuous ergodic Schrödinger operators H! := H0 + V! , where the random potential V! is a nonnegative Andersontype random perturbation of the periodic operator H0 . We consider a lower spectral band edge of (H0 ), say E = 0, at a gap which is preserved by ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We prove a localisation theorem for continuous ergodic Schrödinger operators H! := H0 + V! , where the random potential V! is a nonnegative Andersontype random perturbation of the periodic operator H0 . We consider a lower spectral band edge of (H0 ), say E = 0, at a gap which is preserved by the perturbation V! . Assuming that all Floquet eigenvalues of H0 , which reach the spectral edge 0 as a minimum, have there a positive definite Hessian, we conclude that there exists an interval I containing 0 such that H! has only pure point spectrum in I for almost all !.
Multiscale analysis and localization of random operators
 In Random Schrodinger operators: methods, results, and perspectives. Panorama & Synthèse, Société Mathématique de
"... by ..."
Bounds on the Spectral Shift Function and the Density of States
 COMMUN. MATH. PHYS.
, 2005
"... We study spectra of Schrödinger operators on R d. First we consider a pair of operators which differ by a compactly supported potential, as well as the corresponding semigroups. We prove almost exponential decay of the singular values µn of the difference of the semigroups as n →∞and deduce bounds ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We study spectra of Schrödinger operators on R d. First we consider a pair of operators which differ by a compactly supported potential, as well as the corresponding semigroups. We prove almost exponential decay of the singular values µn of the difference of the semigroups as n →∞and deduce bounds on the spectral shift function of the pair of operators. Thereafter we consider alloy type random Schrödinger operators. The single site potential u is assumed to be nonnegative and of compact support. The distributions of the random coupling constants are assumed to be Hölder continuous. Based on the estimates for the spectral shift function, we prove a Wegner estimate which implies Hölder continuity of the integrated density of states.
INTEGRATED DENSITY OF STATES AND WEGNER ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS
, 2003
"... We survey recent results on spectral properties of random Schrödinger operators. The focus is set on the integrated density of states (IDS). First we present a proof of the existence of a selfaveraging IDS which is general enough to be applicable to random Schrödinger and LaplaceBeltrami operators ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
We survey recent results on spectral properties of random Schrödinger operators. The focus is set on the integrated density of states (IDS). First we present a proof of the existence of a selfaveraging IDS which is general enough to be applicable to random Schrödinger and LaplaceBeltrami operators on manifolds. Subsequently we study more specific models in Euclidean space, namely of alloy type, and concentrate on the regularity properties of the IDS. We discuss the role of the integrated density of states and its regularity properties for the spectral analysis of random Schrödinger operators, particularly in relation to localisation. Proofs of the central results are given in detail. Whenever there are alternative proofs, the different approaches are compared.
Dynamical delocalization in random Landau Hamiltonians
, 2004
"... We prove the existence of dynamical delocalization for random Landau Hamiltonians near each Landau level. Since typically there is dynamical localization at the edges of each disorderedbroadened Landau band, this implies the existence of at least one dynamical mobility edge at each Landau band, n ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We prove the existence of dynamical delocalization for random Landau Hamiltonians near each Landau level. Since typically there is dynamical localization at the edges of each disorderedbroadened Landau band, this implies the existence of at least one dynamical mobility edge at each Landau band, namely a boundary point between the localization and delocalization regimes, which we prove to converge to the corresponding Landau level as either the magnetic field or the disorder goes to zero.