Results 1  10
of
73
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1246 (19 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape con texts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; reg ularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits and the COIL dataset.
A Graduated Assignment Algorithm for Graph Matching
, 1996
"... A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational comp ..."
Abstract

Cited by 285 (15 self)
 Add to MetaCart
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(lm), where l and m are the number of links in the two graphs] and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from twentyfive thousand experiments conducted on 100 node random graphs of varying types (graphs with only zeroone links, weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have...
A New Point Matching Algorithm for NonRigid Registration
, 2002
"... Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. I ..."
Abstract

Cited by 235 (2 self)
 Add to MetaCart
Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. In addition, there could be many features in either set that have no counterparts in the other. This outlier rejection problem further complicates an already di#cult correspondence problem. We formulate featurebased nonrigid registration as a nonrigid point matching problem. After a careful review of the problem and an indepth examination of two types of methods previously designed for rigid robust point matching (RPM), we propose a new general framework for nonrigid point matching. We consider it a general framework because it does not depend on any particular form of spatial mapping. We have also developed an algorithmthe TPSRPM algorithmwith the thinplate spline (TPS) as the parameterization of the nonrigid spatial mapping and the softassign for the correspondence. The performance of the TPSRPM algorithm is demonstrated and validated in a series of carefully designed synthetic experiments. In each of these experiments, an empirical comparison with the popular iterated closest point (ICP) algorithm is also provided. Finally, we apply the algorithm to the problem of nonrigid registration of cortical anatomical structures which is required in brain mapping. While these results are somewhat preliminary, they clearly demonstrate the applicability of our approach to real world tasks involving featurebased nonrigid registration.
A New Algorithm for NonRigid Point Matching
 IN CVPR
, 2000
"... We present a new robust point matching algorithm (RPM) that can jointly estimate the correspondence and nonrigid transformations between two pointsets that may be of different sizes. The algorithm utilizes the softassign for the correspondence and the thinplate spline for the nonrigid mapping. E ..."
Abstract

Cited by 157 (7 self)
 Add to MetaCart
We present a new robust point matching algorithm (RPM) that can jointly estimate the correspondence and nonrigid transformations between two pointsets that may be of different sizes. The algorithm utilizes the softassign for the correspondence and the thinplate spline for the nonrigid mapping. Embedded within a deterministic annealing framework, the algorithm can automatically reject a fraction of the points as outliers. Experiments on both 2D synthetic pointsets with varying degrees of deformation, noise and outliers, and on real 3D sulcal pointsets (extracted from brain MRI) demonstrate the robustness of the algorithm.
Shape Context and Chamfer Matching in Cluttered Scenes
, 2003
"... This paper compares two methods for object localization from contours: shape context and chamfer matching of templates. In the light of our experiments, we suggest improvements to the shape context: Shape contexts are used to find corresponding features between model and image. In real images it is ..."
Abstract

Cited by 97 (5 self)
 Add to MetaCart
This paper compares two methods for object localization from contours: shape context and chamfer matching of templates. In the light of our experiments, we suggest improvements to the shape context: Shape contexts are used to find corresponding features between model and image. In real images it is shown that the shape context is highly influenced by clutter, furthermore even when the object is correctly localized, the feature correspondence may be poor. We show that the robustness of shape matching can be increased by including a figural continuity constraint. The combined shape and continuity cost is minimized using the Viterbi algorithm on features sequentially around the contour, resulting in improved localization and correspondence. Our algorithm can be generally applied to any feature based shape matching method.
Detecting and reading text in natural scenes
 In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
, 2004
"... This paper gives an algorithm for detecting and reading text in natural images. The algorithm is intended for use by blind and visually impaired subjects walking through city scenes. We first obtain a dataset of city images taken by blind and normally sighted subjects. From this dataset, we manually ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
This paper gives an algorithm for detecting and reading text in natural images. The algorithm is intended for use by blind and visually impaired subjects walking through city scenes. We first obtain a dataset of city images taken by blind and normally sighted subjects. From this dataset, we manually label and extract the text regions. Next we perform statistical analysis of the text regions to determine which image features are reliable indicators of text and have low entropy (i.e. feature response is similar for all text images). We obtain weak classifiers by using joint probabilities for feature responses on and off text. These weak classifiers are used as input to an AdaBoost machine learning algorithm to train a strong classifier. In practice, we trained a cascade with 4 strong classifiers containg 79 features. An adaptive binarization and extension algorithm is applied to those regions selected by the cascade classifier. A commercial OCR software is used to read the text or reject it as a nontext region. The overall algorithm has a success rate of over 90% (evaluated by complete detection and reading of the text) on the test set and the unread text is typically small and distant from the viewer. 1.
Möbius voting for surface correspondence
 ACM TRANS. GRAPH. (PROC. SIGGRAPH
, 2009
"... The goal of our work is to develop an efficient, automatic algorithm for discovering point correspondences between surfaces that are approximately and/or partially isometric. Our approach is based on three observations. First, isometries are a subset of the Möbius group, which has lowdimensionality ..."
Abstract

Cited by 58 (5 self)
 Add to MetaCart
The goal of our work is to develop an efficient, automatic algorithm for discovering point correspondences between surfaces that are approximately and/or partially isometric. Our approach is based on three observations. First, isometries are a subset of the Möbius group, which has lowdimensionality – six degrees of freedom for topological spheres, and three for topological discs. Second, computing the Möbius transformation that interpolates any three points can be computed in closedform after a midedge flattening to the complex plane. Third, deviations from isometry can be modeled by a transportationtype distance between corresponding points in that plane. Motivated by these observations, we have developed a Möbius Voting algorithm that iteratively: 1) samples a triplet of three random points from each of two point sets, 2) uses the Möbius transformations defined by those triplets to map both point sets into a canonical coordinate frame on the complex plane, and 3) produces “votes” for predicted correspondences between the mutually closest points with magnitude representing their estimated deviation from isometry. The result of this process is a fuzzy correspondence matrix, which is converted to a permutation matrix with simple matrix operations and output as a discrete set of point correspondences with confidence values. The main advantage of this algorithm is that it can find intrinsic point correspondences in cases of extreme deformation. During experiments with a variety of data sets, we find that it is able to find dozens of point correspondences between different object types in different poses fully automatically.
Nonrigid point set registration: Coherent Point Drift (CPD)
 IN ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 19
, 2006
"... We introduce Coherent Point Drift (CPD), a novel probabilistic method for nonrigid registration of point sets. The registration is treated as a Maximum Likelihood (ML) estimation problem with motion coherence constraint over the velocity field such that one point set moves coherently to align with ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
We introduce Coherent Point Drift (CPD), a novel probabilistic method for nonrigid registration of point sets. The registration is treated as a Maximum Likelihood (ML) estimation problem with motion coherence constraint over the velocity field such that one point set moves coherently to align with the second set. We formulate the motion coherence constraint and derive a solution of regularized ML estimation through the variational approach, which leads to an elegant kernel form. We also derive the EM algorithm for the penalized ML optimization with deterministic annealing. The CPD method simultaneously finds both the nonrigid transformation and the correspondence between two point sets without making any prior assumption of the transformation model except that of motion coherence. This method can estimate complex nonlinear nonrigid transformations, and is shown to be accurate on 2D and 3D examples and robust in the presence of outliers and missing points.
A Robust Point Matching Algorithm for Autoradiograph Alignment
, 1997
"... We present a novel method for the geometric alignment of autoradiographs of the brain. The method is based on finding the spatial mapping and the onetoone correspondences (or homologies) between point features extracted from the images and rejecting nonhomologies as outliers. In this way, we atte ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
We present a novel method for the geometric alignment of autoradiographs of the brain. The method is based on finding the spatial mapping and the onetoone correspondences (or homologies) between point features extracted from the images and rejecting nonhomologies as outliers. In this way, we attempt to account for the local natural and artifactual differences between the autoradiograph slices. We have executed the resulting automated algorithm on a set of left prefrontal cortex autoradiograph slices, specifically demonstrated its ability to perform point outlier rejection, validated it using synthetically generated spatial mappings and provided a visual comparison against the well known iterated closest point (ICP) algorithm. Visualization of a stack of aligned left prefrontal cortex autoradiograph slices is also provided.