Results 1  10
of
36
Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization
, 2000
"... ..."
A rank minimization heuristic with application to minimum order system approximation
 In Proceedings of the 2001 American Control Conference
, 2001
"... Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization problem (globally) is very ..."
Abstract

Cited by 147 (9 self)
 Add to MetaCart
Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization problem (globally) is very difficult. One simple and surprisingly effective heuristic, applicable when the matrix variable is symmetric and positive semidefinite, is to minimize its trace in place of its rank. This results in a semidefinite program (SDP) which can be efficiently solved. In this paper we describe a generalization of the trace heuristic that applies to general nonsymmetric, even nonsquare, matrices, and reduces to the trace heuristic when the matrix is positive semidefinite. The heuristic is to replace the (nonconvex) rank objective with the sum of the singular values of the matrix, which is the dual of the spectral norm. We show that this problem can be reduced to an SDP, hence efficiently solved. To motivate the heuristic, we show that the dual spectral norm is the convex envelope of the rank on the set of matrices with norm less than one. We demonstrate the method on the problem of minimum order system approximation. 1
Fastest Mixing Markov Chain on A Graph
 SIAM REVIEW
, 2003
"... We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Mar ..."
Abstract

Cited by 90 (15 self)
 Add to MetaCart
We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that
Multiobjective output feedback control via LMI
 in Proc. Amer. Contr. Conf
, 1997
"... The problem of multiobjective H2=H1 optimal controller design is reviewed. There is as yet no exact solution to this problem. We present a method based on that proposed by Scherer [14]. The problem is formulated as a convex semidefinite program (SDP) using the LMI formulation of the H2 and H1 norms. ..."
Abstract

Cited by 72 (5 self)
 Add to MetaCart
The problem of multiobjective H2=H1 optimal controller design is reviewed. There is as yet no exact solution to this problem. We present a method based on that proposed by Scherer [14]. The problem is formulated as a convex semidefinite program (SDP) using the LMI formulation of the H2 and H1 norms. Suboptimal solutions are computed using finite dimensional Qparametrization. The objective value of the suboptimal Q's converges to the true optimum as the dimension of Q is increased. State space representations are presented which are the analog of those given by Khargonekar and Rotea [11] for the H2 case. A simple example computed using FIR (Finite Impulse Response) Q's is presented.
Robust minimum variance beamforming
 IEEE Transactions on Signal Processing
, 2005
"... Abstract—This paper introduces an extension of minimum variance beamforming that explicitly takes into account variation or uncertainty in the array response. Sources of this uncertainty include imprecise knowledge of the angle of arrival and uncertainty in the array manifold. In our method, uncerta ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
Abstract—This paper introduces an extension of minimum variance beamforming that explicitly takes into account variation or uncertainty in the array response. Sources of this uncertainty include imprecise knowledge of the angle of arrival and uncertainty in the array manifold. In our method, uncertainty in the array manifold is explicitly modeled via an ellipsoid that gives the possible values of the array for a particular look direction. We choose weights that minimize the total weighted power output of the array, subject to the constraint that the gain should exceed unity for all array responses in this ellipsoid. The robust weight selection process can be cast as a secondorder cone program that can be solved efficiently using Lagrange multiplier techniques. If the ellipsoid reduces to a single point, the method coincides with Capon’s method. We describe in detail several methods that can be used to derive an appropriate uncertainty ellipsoid for the array response. We form separate uncertainty ellipsoids for each component in the signal path (e.g., antenna, electronics) and then determine an aggregate uncertainty ellipsoid from these. We give new results for modeling the elementwise products of ellipsoids. We demonstrate the robust beamforming and the ellipsoidal modeling methods with several numerical examples. Index Terms—Ellipsoidal calculus, Hadamard product, robust beamforming, secondorder cone programming.
Convex Optimization & Euclidean Distance Geometry
, 2005
"... ISBN 9781847280640 (International) Version 07.07.2006 available in print as conceived in color. cybersearch: I. convex optimization II. convex cones III. convex geometry IV. distance geometry V. distance matrix programs and graphics by Matlab typesetting by with donations from SIAM and AMS. This ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
ISBN 9781847280640 (International) Version 07.07.2006 available in print as conceived in color. cybersearch: I. convex optimization II. convex cones III. convex geometry IV. distance geometry V. distance matrix programs and graphics by Matlab typesetting by with donations from SIAM and AMS. This searchable electronic color pdfBook is clicknavigable within the text by page, section, subsection, chapter, theorem, example, definition, cross reference, citation, equation, figure, table, and hyperlink. A pdfBook has no electronic copy protection and can be read and printed by most computers. The publisher hereby grants the right to reproduce this work in any format but limited to personal use. �2005 Jon Dattorro
The fastest mixing Markov process on a graph and a connection to a maximum variance unfolding problem
 SIAM REVIEW
, 2006
"... We consider a Markov process on a connected graph, with edges labeled with transition rates between the adjacent vertices. The distribution of the Markov process converges to the uniform distribution at a rate determined by the second smallest eigenvalue λ2 of the Laplacian of the weighted graph. I ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
We consider a Markov process on a connected graph, with edges labeled with transition rates between the adjacent vertices. The distribution of the Markov process converges to the uniform distribution at a rate determined by the second smallest eigenvalue λ2 of the Laplacian of the weighted graph. In this paper we consider the problem of assigning transition rates to the edges so as to maximize λ2 subject to a linear constraint on the rates. This is the problem of finding the fastest mixing Markov process (FMMP) on the graph. We show that the FMMP problem is a convex optimization problem, which can in turn be expressed as a semidefinite program, and therefore effectively solved numerically. We formulate a dual of the FMMP problem and show that it has a natural geometric interpretation as a maximum variance unfolding (MVU) problem, i.e., the problem of choosing a set of points to be as far apart as possible, measured by their variance, while respecting local distance constraints. This MVU problem is closely related to a problem recently proposed by Weinberger and Saul as a method for “unfolding ” highdimensional data that lies on a lowdimensional manifold. The duality between the FMMP and MVU problems sheds light on both problems, and allows us to characterize and, in some cases, find optimal solutions.
Lowauthority controller design via convex optimization
 AIAA Journal of Guidance, Control, and Dynamics
, 1999
"... In this paper we address the problem of lowauthority controller (LAC) design. The premise is that the actuators have limited authority, and hence cannot significantly shift the eigenvalues of the system. As a result, the closedloop eigenvalues can be well approximated analytically using perturbati ..."
Abstract

Cited by 30 (14 self)
 Add to MetaCart
In this paper we address the problem of lowauthority controller (LAC) design. The premise is that the actuators have limited authority, and hence cannot significantly shift the eigenvalues of the system. As a result, the closedloop eigenvalues can be well approximated analytically using perturbation theory. These analytical approximations may suffice to predict the behavior of the closedloop system in practical cases, and will provide at least a very strong rationale for the first step in the design iteration loop. We will show that LAC design can be cast as convex optimization problems that can be solved efficiently in practice using interiorpoint methods. Also, we will show that by optimizing the ℓ1 norm of the feedback gains, we can arrive at sparse designs, i.e., designs in which only a small number of the control gains are nonzero. Thus, in effect, we can also solve actuator/sensor placement or controller architecture design problems. Keywords: Lowauthority control, actuator/sensor placement, linear operator perturbation theory, convex optimization, secondorder cone programming, semidefinite programming, linear matrix inequality. 1
Optimal Wire and Transistor Sizing for Circuits with NonTree Topology
 in Proc. Int. Conf. on Computer Aided Design
, 1997
"... Conventional methods for optimal sizing of wires and transistors use linear RC circuit models and the Elmore delay as a measure of signal delay. If the RC circuit has a tree topology the sizing problem reduces to a convex optimization problem which can be solved using geometric programming. The tree ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
Conventional methods for optimal sizing of wires and transistors use linear RC circuit models and the Elmore delay as a measure of signal delay. If the RC circuit has a tree topology the sizing problem reduces to a convex optimization problem which can be solved using geometric programming. The tree topology restriction precludes the use of these methods in several sizing problems of significant importance to highperformance deep submicron design including, for example, circuits with loops of resistors, e.g., clock distribution meshes, and circuits with coupling capacitors, e.g., buses with crosstalk between the lines. The paper proposes a new optimization method which can be used to address these problems. The method uses the dominant time constant as a measure of signal propagation delay in an RC circuit, instead of Elmore delay. Using this measure, sizing of any RC circuit can be cast as a convex optimization problem which can be solved using the recently developed efficient interi...