Results 1  10
of
51
The strong perfect graph theorem
 ANNALS OF MATHEMATICS
, 2006
"... A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asse ..."
Abstract

Cited by 166 (15 self)
 Add to MetaCart
A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornuéjols and Vuˇsković — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both these conjectures.
Every minorclosed property of sparse graphs is testable
, 2007
"... Suppose G is a graph of bounded degree d, and one needs to remove ɛn of its edges in order to make it planar. We show that in this case the statistics of local neighborhoods around vertices of G is far from the statistics of local neighborhoods around vertices of any planar graph G ′. In fact, a sim ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
Suppose G is a graph of bounded degree d, and one needs to remove ɛn of its edges in order to make it planar. We show that in this case the statistics of local neighborhoods around vertices of G is far from the statistics of local neighborhoods around vertices of any planar graph G ′. In fact, a similar result is proved for any minorclosed property of bounded degree graphs. As an immediate corollary of the above result we infer that many well studied graph properties, like being planar, outerplanar, seriesparallel, bounded genus, bounded treewidth and several others, are testable with a constant number of queries. None of these properties was previously known to be testable even with o(n) queries. 1
Approximation Algorithms for Classes of Graphs Excluding SingleCrossing Graphs as Minors
"... Many problems that are intractable for general graphs allow polynomialtime solutions for structured classes of graphs, such as planar graphs and graphs of bounded treewidth. ..."
Abstract

Cited by 25 (16 self)
 Add to MetaCart
Many problems that are intractable for general graphs allow polynomialtime solutions for structured classes of graphs, such as planar graphs and graphs of bounded treewidth.
Branch and Tree Decomposition Techniques for Discrete Optimization
, 2005
"... This chapter gives a general overview of two emerging techniques for discrete optimization that have footholds in mathematics, computer science, and operations research: branch decompositions and tree decompositions. Branch decompositions and tree decompositions along with their respective connecti ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
This chapter gives a general overview of two emerging techniques for discrete optimization that have footholds in mathematics, computer science, and operations research: branch decompositions and tree decompositions. Branch decompositions and tree decompositions along with their respective connectivity invariants, branchwidth and treewidth, were first introduced to aid in proving the Graph Minors Theorem, a wellknown conjecture (Wagner’s conjecture) in graph theory. The algorithmic importance of branch decompositions and tree decompositions for solving NPhard problems modelled on graphs was first realized by computer scientists in relation to formulating graph problems in monadic second order logic. The dynamic programming techniques utilizing branch decompositions and tree decompositions, called branch decomposition and tree decomposition based algorithms, fall into a class of algorithms known as fixedparameter tractable algorithms and have been shown to be effective in a practical setting for NPhard problems such as minimum domination, the travelling salesman problem, general minor containment, and frequency assignment problems.
Graph Minor Theory
 BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY
, 2005
"... A monumental project in graph theory was recently completed. The project, started by Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a new way of looking at graph theory. The motivating problem was Kuratowski’s characterization of planar graphs, and a farreaching ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
A monumental project in graph theory was recently completed. The project, started by Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a new way of looking at graph theory. The motivating problem was Kuratowski’s characterization of planar graphs, and a farreaching generalization of this, conjectured by Wagner: If a class of graphs is minorclosed (i.e., it is closed under deleting and contracting edges), then it can be characterized by a finite number of excluded minors. The proof of this conjecture is based on a very general theorem about the structure of large graphs: If a minorclosed class of graphs does not contain all graphs, then every graph in it is glued together in a treelike fashion from graphs that can almost be embedded in a fixed surface. We describe the precise formulation of the main results and survey some of its applications to algorithmic and structural problems in graph theory.
Algorithmic MetaTheorems
 In M. Grohe and R. Neidermeier eds, International Workshop on Parameterized and Exact Computation (IWPEC), volume 5018 of LNCS
, 2008
"... Algorithmic metatheorems are algorithmic results that apply to a whole range of problems, instead of addressing just one specific problem. This kind of theorems are often stated relative to a certain class of graphs, so the general form of a meta theorem reads “every problem in a certain class C of ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Algorithmic metatheorems are algorithmic results that apply to a whole range of problems, instead of addressing just one specific problem. This kind of theorems are often stated relative to a certain class of graphs, so the general form of a meta theorem reads “every problem in a certain class C of problems can be solved efficiently on every graph satisfying a certain property P”. A particularly well known example of a metatheorem is Courcelle’s theorem that every decision problem definable in monadic secondorder logic (MSO) can be decided in linear time on any class of graphs of bounded treewidth [1]. The class C of problems can be defined in a number of different ways. One option is to state combinatorial or algorithmic criteria of problems in C. For instance, Demaine, Hajiaghayi and Kawarabayashi [5] showed that every minimisation problem that can be solved efficiently on graph classes of bounded treewidth and for which approximate solutions can be computed efficiently from solutions of certain subinstances, have a PTAS on any class of graphs excluding a fixed minor. While this gives a strong unifying explanation for PTAS of many
Recent Excluded Minor Theorems for Graphs
 IN SURVEYS IN COMBINATORICS, 1999 267 201222. THE ELECTRONIC JOURNAL OF COMBINATORICS 8 (2001), #R34 8
, 1999
"... A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. An excluded minor theorem describes the structure of graphs with no minor isomorphic to a prescribed set of graphs. Splitter theorems are tools for proving excluded minor theorems. We disc ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. An excluded minor theorem describes the structure of graphs with no minor isomorphic to a prescribed set of graphs. Splitter theorems are tools for proving excluded minor theorems. We discuss splitter theorems for internally 4connected graphs and for cyclically 5connected cubic graphs, the graph minor theorem of Robertson and Seymour, linkless embeddings of graphs in 3space, Hadwiger’s conjecture on tcolorability of graphs with no Kt+1 minor, Tutte’s edge 3coloring conjecture on edge 3colorability of 2connected cubic graphs with no Petersen minor, and Pfaffian orientations of bipartite graphs. The latter are related to the even directed circuit problem, a problem of Pólya about permanents, the 2colorability of hypergraphs, and signnonsingular matrices.
On the oddminor variant of Hadwiger’s conjecture
, 2011
"... A Klexpansion consists of l vertexdisjoint trees, every two of which are joined by an edge. We call such an expansion odd if its vertices can be twocoloured so that the edges of the trees are bichromatic but the edges between trees are monochromatic. We show that, for every l, if a graph contains ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
A Klexpansion consists of l vertexdisjoint trees, every two of which are joined by an edge. We call such an expansion odd if its vertices can be twocoloured so that the edges of the trees are bichromatic but the edges between trees are monochromatic. We show that, for every l, if a graph contains no odd Klexpansion then its chromatic number is O(l √ log l). In doing so, we obtain a characterization of graphs which contain no odd Klexpansion which is of independent interest. We also prove that given a graph and a subset S of its vertex set, either there are k vertexdisjoint odd paths with endpoints in S, or there is a set X of at most 2k − 2 vertices such that every odd path with both ends in S contains a vertex in X. Finally, we discuss the algorithmic implications of these results.