Results 1 
3 of
3
A TimeSpace Tradeoff for Sorting on NonOblivious Machines
, 1981
"... This paper adopts the latter strategy in order to pursue the complexity of sorting ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
This paper adopts the latter strategy in order to pursue the complexity of sorting
Size Space tradeoffs for Resolution
, 2002
"... We investigate tradeoffs of various important complexity measures such as size, space and width. We show examples of CNF formulas that have optimal proofs with respect to any one of these parameters, but optimizing one parameter must cost an increase in the other. These results, the first of their ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
We investigate tradeoffs of various important complexity measures such as size, space and width. We show examples of CNF formulas that have optimal proofs with respect to any one of these parameters, but optimizing one parameter must cost an increase in the other. These results, the first of their kind, have implications on the efficiency (or rather, inefficiency) of some commonly used SAT solving heuristics. Our proof
Narrow proofs may be spacious: Separating space and width in resolution (Extended Abstract)
 REVISION 02, ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY (ECCC
, 2005
"... The width of a resolution proof is the maximal number of literals in any clause of the proof. The space of a proof is the maximal number of clauses kept in memory simultaneously if the proof is only allowed to infer new clauses from clauses currently in memory. Both of these measures have previously ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
The width of a resolution proof is the maximal number of literals in any clause of the proof. The space of a proof is the maximal number of clauses kept in memory simultaneously if the proof is only allowed to infer new clauses from clauses currently in memory. Both of these measures have previously been studied and related to the resolution refutation size of unsatisfiable CNF formulas. Also, the refutation space of a formula has been proven to be at least as large as the refutation width, but it has been open whether space can be separated from width or the two measures coincide asymptotically. We prove that there is a family of kCNF formulas for which the refutation width in resolution is constant but the refutation space is nonconstant, thus solving a problem mentioned in several previous papers.