Results 1  10
of
72
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 349 (21 self)
 Add to MetaCart
We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result is obtained for the 2matching problem and its variants. We also derive the first approximation algorithms for many NPcomplete problems, including the nonfixed pointtopoint connection problem, the exact path partitioning problem, and complex locationdesign problems. Moreover, for the prizecollecting traveling salesman or Steiner tree problems, we obtain 2approximation algorithms, therefore improving the previously bestknown performance guarantees of 2.5 and 3, respectively [Math. Programming, 59 (1993), pp. 413420].
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
When trees collide: An approximation algorithm for the generalized Steiner problem on networks
, 1994
"... We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the a ..."
Abstract

Cited by 212 (31 self)
 Add to MetaCart
We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the available links and satisfying the requirements. Our algorithm outputs a solution whose cost is within 2dlog 2 (r + 1)e of optimal, where r is the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial minmax approximate equality relating minimumcost networks to maximum packings of certain kinds of cuts. As a consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts; we show that this algorithm has application to estimating the reliability of a probabilistic network.
A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem
 Combinatorica
"... We present a factor 2 approximation algorithm for finding a minimumcost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, which is also known as the survivable network design problem. Our algorit ..."
Abstract

Cited by 197 (5 self)
 Add to MetaCart
We present a factor 2 approximation algorithm for finding a minimumcost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, which is also known as the survivable network design problem. Our algorithm first solves the linear relaxation of this problem, and then iteratively rounds off the solution. The key idea in rounding off is that in a basic solution of the LP relaxation, at least one edge gets included at least to the extent of half. We include this edge into our integral solution and solve the residual problem. 1 Introduction We consider the problem of finding a minimumcost subgraph of a given graph such that the number of edges crossing each cut is at least a specified requirement. Formally, given an undirected multigraph G = (V; E), a nonnegative cost function c : E ! Q+ , and a requirement function f : 2 V ! Z , solve the following integer program (IP): min X e2E c e x...
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 120 (7 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
Provisioning a Virtual Private Network: A network design problem for multicommodity flow
 In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
, 2001
"... Consider a setting in which a group of nodes, situated in a large underlying network, wishes to reserve bandwidth on which to support communication. Virtual private networks (VPNs) are services that support such a construct; rather than building a new physical network on the group of nodes that must ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
Consider a setting in which a group of nodes, situated in a large underlying network, wishes to reserve bandwidth on which to support communication. Virtual private networks (VPNs) are services that support such a construct; rather than building a new physical network on the group of nodes that must be connected, bandwidth in the underlying network is reserved for communication within the group, forming a virtual “subnetwork.” Provisioning a virtual private network over a set of terminals gives rise to the following general network design problem. We have bounds on the cumulative amount of traffic each terminal can send and receive; we must choose a path for each pair of terminals, and a bandwidth allocation for each edge of the network, so that any traffic matrix consistent with the given upper bounds can be feasibly routed. Thus, we are seeking to design a network that can support a continuum of possible traffic scenarios. We provide optimal and approximate algorithms for several variants of this problem, depending on whether the traffic matrix is required to be symmetric, and on whether the designed network is required to be a tree (a natural constraint in a number of basic applications). We also establish a relation between this collection of network design problems and a variant of the facility location problem introduced by Karger and Minkoff; we extend their results by providing a stronger approximation algorithm for this latter problem. 1
RANDOM SAMPLING IN CUT, FLOW, AND NETWORK DESIGN PROBLEMS
, 1999
"... We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for pro ..."
Abstract

Cited by 71 (11 self)
 Add to MetaCart
We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for problems involving cuts in graphs. We present fast randomized (Monte Carlo and Las Vegas) algorithms for approximating and exactly finding minimum cuts and maximum flows in unweighted, undirected graphs. Our cutapproximation algorithms extend unchanged to weighted graphs while our weightedgraph flow algorithms are somewhat slower. Our approach gives a general paradigm with potential applications to any packing problem. It has since been used in a nearlinear time algorithm for finding minimum cuts, as well as faster cut and flow algorithms. Our sampling theorems also yield faster algorithms for several other cutbased problems, including approximating the best balanced cut of a graph, finding a kconnected orientation of a 2kconnected graph, and finding integral multicommodity flows in graphs with a great deal of excess capacity. Our methods also improve the efficiency of some parallel cut and flow algorithms. Our methods also apply to the network design problem, where we wish to build a network satisfying certain connectivity requirements between vertices. We can purchase edges of various costs and wish to satisfy the requirements at minimum total cost. Since our sampling theorems apply even when the sampling probabilities are different for different edges, we can apply randomized rounding to solve network design problems. This gives approximation algorithms that guarantee much better approximations than previous algorithms whenever the minimum connectivity requirement is large. As a particular example, we improve the best approximation bound for the minimum kconnected subgraph problem from 1.85 to 1 � O(�log n)/k).
Improved Approximation Algorithms for Uniform Connectivity Problems
 J. Algorithms
"... The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. Th ..."
Abstract

Cited by 69 (2 self)
 Add to MetaCart
The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. The following results are presented: 1. For the unweighted kedgeconnectivity problem an approximation algorithm that achieves a performance ratio of 1.85 is described. This is the first polynomialtime algorithm that achieves a constant less than 2, for all k. 2. For the weighted kvertexconnectivity problem, a constant factor approximation algorithm is given assuming that the edgeweights satisfy the triangle inequality. This is the first constant factor approximation algorithm for this problem. 3. For the case of biconnectivity, with no assumptions about the weights of the edges, an algorithm that achieves a factor asymptotically approaching 2 is described. This matches the previous best...
Approximation Algorithms for MinimumCost kVertex Connected Subgraphs
 In 34th Annual ACM Symposium on the Theory of Computing
, 2002
"... We present two new algorithms for the problem of nding a minimumcost kvertex connected spanning subgraph. The rst algorithm works on undirected graphs with at least 6k vertices and achieves an approximation of 6 times the kth harmonic number (which is O(log k)), The second algorithm works o ..."
Abstract

Cited by 59 (1 self)
 Add to MetaCart
We present two new algorithms for the problem of nding a minimumcost kvertex connected spanning subgraph. The rst algorithm works on undirected graphs with at least 6k vertices and achieves an approximation of 6 times the kth harmonic number (which is O(log k)), The second algorithm works on any graph (directed or undirected) and gives an O( n=)approximation algorithm for any > 0 and k (1 )n. These algorithms improve on the previous best approximation factor (more than k=2). The latter algorithm also extends to other problems in network design with vertex connectivity requirements. Our main tools are setpair relaxations, a theorem of Mader's (in the undirected case) and iterative rounding (general case).
Strengthening Integrality Gaps for Capacitated Network Design and Covering Problems
"... A capacitated covering IP is an integer program of the form min{cxUx ≥ d, 0 ≤ x ≤ b, x ∈ Z +}, where all entries of c, U, and d are nonnegative. Given such a formulation, the ratio between the optimal integer solution and the optimal solution to the linear program relaxation can be as bad as d∞ ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
A capacitated covering IP is an integer program of the form min{cxUx ≥ d, 0 ≤ x ≤ b, x ∈ Z +}, where all entries of c, U, and d are nonnegative. Given such a formulation, the ratio between the optimal integer solution and the optimal solution to the linear program relaxation can be as bad as d∞, even when U consists of a single row. We show that by adding additional inequalities, this ratio can be improved significantly. In the general case, we show that the improved ratio is bounded by the maximum number of nonzero coefficients in a row of U, and provide a polynomialtime approximation algorithm to achieve this bound. This improves the previous best approximation algorithm which guaranteed a solution within the maximum row sum times optimum. We also show that for particular instances of capacitated covering problems, including the minimum knapsack problem and the capacitated network design problem, these additional inequalities yield even stronger improvements in the IP/LP ratio. For the minimum knapsack, we show that this improved ratio is at most 2. This is the first nontrivial IP/LP ratio for this basic problem. Capacitated network design generalizes the classical network design problem by introducing capacities on the edges, whereas previous work only considers the case when all capacities equal 1. For capacitated network design problems, we show that this improved ratio depends on a parameter of the graph, and we also provide polynomialtime approximation algorithms to match this bound. This improves on the best previous mapproximation, where m is the number of edges in the graph. We also discuss improvements for some other special capacitated covering problems, including the fixed charge network flow problem. Finally, for the capacitated network design problem, we give some stronger results and algorithms for series parallel graphs and strengthen these further for outerplanar graphs. Most of our approximation algorithms rely on solving a single LP. When the original LP (before adding our strengthening inequalities) has a polynomial number of constraints, we describe a combinatorial FPTAS for the LP with our (exponentiallymany) inequalities added. Our contribution here is to describe an appropriate