Results 1  10
of
53
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 438 (26 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
Approximating the permanent
 SIAM J. Computing
, 1989
"... Abstract. A randomised approximation scheme for the permanent of a 01 matrix is presented. The task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the ..."
Abstract

Cited by 360 (27 self)
 Add to MetaCart
(Show Context)
Abstract. A randomised approximation scheme for the permanent of a 01 matrix is presented. The task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the graph. For a wide class of 01 matrices the approximation scheme is fullypolynomial, i.e., runs in time polynomial in the size of the matrix and a parameter that controls the accuracy of the output. This class includes all dense matrices (those that contain sufficiently many l’s) and almost all sparse matrices in some reasonable probabilistic model for 01 matrices of given density. For the approach sketched above to be computationally efficient, the Markov chain must be rapidly mixing: informally, it must converge in a short time to its stationary distribution. A major portion of the paper is devoted to demonstrating that the matchings chain is rapidly mixing, apparently the first such result for a Markov chain with genuinely complex structure. The techniques used seem to have general applicability, and are applied again in the paper to validate a fullypolynomial randomised approximation scheme for the partition function of an arbitrary monomerdimer system.
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 287 (12 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
The Complexity of Counting in Sparse, Regular, and Planar Graphs
 SIAM Journal on Computing
, 1997
"... We show that a number of graphtheoretic counting problems remain NPhard, indeed #Pcomplete, in very restricted classes of graphs. In particular, it is shown that the problems of counting matchings, vertex covers, independent sets, and extremal variants of these all remain hard when restricted to ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
We show that a number of graphtheoretic counting problems remain NPhard, indeed #Pcomplete, in very restricted classes of graphs. In particular, it is shown that the problems of counting matchings, vertex covers, independent sets, and extremal variants of these all remain hard when restricted to planar bipartite graphs of bounded degree or regular graphs of constant degree. To achieve these results, a new interpolationbased reduction technique which preserves properties such as constant degree is introduced. In addition, the problem of approximately counting minimum cardinality vertex covers is shown to remain NPhard even when restricted to graphs of maximal degree 3. Previously, restrictedcase complexity results for counting problems were elusive; we believe our techniques may help obtain similar results for many other counting problems. 1 Introduction Ever since the introduction of NPcompleteness in the early 1970's, the primary focus of complexity theory has been on decision ...
On the fixed parameter complexity of graph enumeration problems definable in monadic secondorder logic
, 2001
"... ..."
Accidental Algorithms
 In Proc. 47th Annual IEEE Symposium on Foundations of Computer Science 2006
, 2004
"... Complexity theory is built fundamentally on the notion of efficient reduction among computational problems. Classical reductions involve gadgets that map solution fragments of one problem to solution fragments of another in onetoone, or possibly onetomany, fashion. In this paper we propose a new ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
Complexity theory is built fundamentally on the notion of efficient reduction among computational problems. Classical reductions involve gadgets that map solution fragments of one problem to solution fragments of another in onetoone, or possibly onetomany, fashion. In this paper we propose a new kind of reduction that allows for gadgets with manytomany correspondences, in which the individual correspondences among the solution fragments can no longer be identified. Their objective may be viewed as that of generating interference patterns among these solution fragments so as to conserve their sum. We show that such holographic reductions provide a method of translating a combinatorial problem to finite systems of polynomial equations with integer coefficients such that the number of solutions of the combinatorial problem can be counted in polynomial time if one of the systems has a solution over the complex numbers. We derive polynomial time algorithms in this way for a number of problems for which only exponential time algorithms were known before. General questions about complexity classes can also be formulated. If the method is applied to a #Pcomplete problem then polynomial systems can be obtained the solvability of which would imply P #P = NC2. 1
Statistical Mechanics, ThreeDimensionality and NPcompleteness I. Universality of Intractability for the Partition Function of the Ising Model Across NonPlanar Lattices (Extended Abstract)
"... This work provides an exact characterization, across crystal lattices, of the computational tractability frontier for the partition functions of several Ising models. Our results show that beyond planarity computing partition functions is NPcomplete. We provide rigorous solutions to several working ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
This work provides an exact characterization, across crystal lattices, of the computational tractability frontier for the partition functions of several Ising models. Our results show that beyond planarity computing partition functions is NPcomplete. We provide rigorous solutions to several working conjectures in the statistical mechanics literature, such as the CrossedBonds conjecture, and the impossibility to compute effectively the partition functions for any threedimensional lattice Ising model � these conjectures apply to the Onsager algebraic method, the Fermion operators method, and the combinatorial method based on Pfaffians. The fundamental results of the area, including those of Onsager, Kac, Feynman, Fisher, Kasteleyn, Temperley, Green, Hurst and more recently Barahona: for every Planar crystal lattice the partition functions for the nite sublattices can be computed in polynomialtime, paired with the results of this paper: for every NonPlanar crystal lattice computing the parition functions for the finite sublattices is NPcomplete, provide an exact characterization for several of the most studied Ising models. Our results settle at once, for several models, (1) the 2D nonplanar vs. 2D planar, (2) the nextnearest neighbour
Holographic Algorithms: From Art to Science
 Electronic Colloquium on Computational Complexity Report
, 2007
"... We develop the theory of holographic algorithms. We give characterizations of algebraic varieties of realizable symmetric generators and recognizers on the basis manifold, and a polynomial time decision algorithm for the simultaneous realizability problem. Using the general machinery we are able to ..."
Abstract

Cited by 41 (16 self)
 Add to MetaCart
(Show Context)
We develop the theory of holographic algorithms. We give characterizations of algebraic varieties of realizable symmetric generators and recognizers on the basis manifold, and a polynomial time decision algorithm for the simultaneous realizability problem. Using the general machinery we are able to give unexpected holographic algorithms for some counting problems, modulo certain Mersenne type integers. These counting problems are #Pcomplete without the moduli. Going beyond symmetric signatures, we define dadmissibility and drealizability for general signatures, and give a characterization of 2admissibility and some general constructions of admissible and realizable families. 1
Theory of Computation of Multidimensional Entropy with an Application to the MonomerDimer Problem
 Advances of Applied Math
"... We outline the most recent theory for the computation of the exponential growth rate of the number of configurations on a multidimensional grid. As an application we compute the monomerdimer constant for the 2dimensional grid to 8 decimal digits, agreeing with the heuristic computations of Baxter ..."
Abstract

Cited by 31 (16 self)
 Add to MetaCart
(Show Context)
We outline the most recent theory for the computation of the exponential growth rate of the number of configurations on a multidimensional grid. As an application we compute the monomerdimer constant for the 2dimensional grid to 8 decimal digits, agreeing with the heuristic computations of Baxter, and for the 3dimensional grid with an error smaller than 1.35%.
Approximating the Number of MonomerDimer Coverings of a Lattice
 Journal of Statistical Physics
, 1996
"... The paper studies the problem of counting the number of coverings of a ddimensional rectangular lattice by a specified number of monomers and dimers. This problem arises in several models in statistical physics, and has been widely studied. A classical technique due to Fisher, Kasteleyn and Temper ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
(Show Context)
The paper studies the problem of counting the number of coverings of a ddimensional rectangular lattice by a specified number of monomers and dimers. This problem arises in several models in statistical physics, and has been widely studied. A classical technique due to Fisher, Kasteleyn and Temperley solves the problem exactly in two dimensions when the number of monomers is zero (the dimer covering problem), but is not applicable in higher dimensions or in the presence of monomers. This paper presents the first provably polynomial time approximation algorithms for computing the number of coverings with any specified number of monomers in ddimensional rectangular lattices with periodic boundaries, for any fixed dimension d , and in twodimensional lattices with fixed boundaries. The algorithms are based on Monte Carlo simulation of a suitable Markov chain, and, in contrast to most Monte Carlo algorithms in statistical physics, have rigorously derived performance guarantees that do n...