Results 1  10
of
150
A comparison of structural CSP decomposition methods
 Artificial Intelligence
, 2000
"... We compare tractable classes of constraint satisfaction problems (CSPs). We first give a uniform presentation of the major structural CSP decomposition methods. We then introduce a new class of tractable CSPs based on the concept of hypertree decomposition recently developed in Database Theory. We i ..."
Abstract

Cited by 174 (26 self)
 Add to MetaCart
(Show Context)
We compare tractable classes of constraint satisfaction problems (CSPs). We first give a uniform presentation of the major structural CSP decomposition methods. We then introduce a new class of tractable CSPs based on the concept of hypertree decomposition recently developed in Database Theory. We introduce a framework for comparing parametric decompositionbased methods according to tractability criteria and compare the most relevant methods. We show that the method of hypertree decomposition dominates the others in the case of general (nonbinary) CSPs.
AND/OR Search Spaces for Graphical Models
, 2004
"... The paper introduces an AND/OR search space perspective for graphical models that include probabilistic networks (directed or undirected) and constraint networks. In contrast to the traditional (OR) search space view, the AND/OR search tree displays some of the independencies present in the gr ..."
Abstract

Cited by 119 (44 self)
 Add to MetaCart
The paper introduces an AND/OR search space perspective for graphical models that include probabilistic networks (directed or undirected) and constraint networks. In contrast to the traditional (OR) search space view, the AND/OR search tree displays some of the independencies present in the graphical model explicitly and may sometime reduce the search space exponentially. Indeed, most
Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs
, 2002
"... We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. ..."
Abstract

Cited by 112 (22 self)
 Add to MetaCart
We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. The same technique can be used to show that the kface cover problem ( find a size k set of faces that cover all vertices of a given plane graph) can be solved in O(c n) time, where c 1 = 3 and k is the size of the face cover set. Similar results can be obtained in the planar case for some variants of kdominating set, e.g., kindependent dominating set and kweighted dominating set.
Models and Solution Techniques for Frequency Assignment Problems
, 2001
"... Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed d ..."
Abstract

Cited by 109 (10 self)
 Add to MetaCart
Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modeling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey
Deciding FirstOrder Properties of Locally TreeDecomposable Graphs
 In Proc. 26th ICALP
, 1999
"... . We introduce the concept of a class of graphs being locally treedecomposable. There are numerous examples of locally treedecomposable classes, among them the class of planar graphs and all classes of bounded valence or of bounded treewidth. We show that for each locally treedecomposable cl ..."
Abstract

Cited by 98 (14 self)
 Add to MetaCart
(Show Context)
. We introduce the concept of a class of graphs being locally treedecomposable. There are numerous examples of locally treedecomposable classes, among them the class of planar graphs and all classes of bounded valence or of bounded treewidth. We show that for each locally treedecomposable class C of graphs and for each property ' of graphs that is denable in rstorder logic, there is a linear time algorithm deciding whether a given graph G 2 C has property '. 1 Introduction It is an important task in the theory of algorithms to nd feasible instances of otherwise intractable algorithmic problems. A notion that has turned out to be extremely useful in this context is that of treewidth of a graph. 3Colorability, Hamiltonicity, and many other NPcomplete properties of graphs can be decided in linear time when restricted to graphs whose treewidth is bounded by a xed constant (see [Bod97] for a survey). Courcelle [Cou90] proved a metatheorem, which easily implies numer...
Domino treewidth
 DISCRETE MATH. THEOR. COMPUT. SCI
, 1994
"... We consider a special variant of treedecompositions, called domino treedecompositions, and the related notion of domino treewidth. In a domino treedecomposition, each vertex of the graph belongs to at most two nodes of the tree. We prove that for every k, d, there exists a constant ck;d such that ..."
Abstract

Cited by 87 (4 self)
 Add to MetaCart
We consider a special variant of treedecompositions, called domino treedecompositions, and the related notion of domino treewidth. In a domino treedecomposition, each vertex of the graph belongs to at most two nodes of the tree. We prove that for every k, d, there exists a constant ck;d such that a graph with treewidth at most k and maximum degree at most d has domino treewidth at most ck;d. The domino treewidth of a tree can be computed in O(n 2 log n) time. There exist polynomial time algorithms that  for fixed k  decide whether a given graph G has domino treewidth at most k. If k is not fixed, this problem is NPcomplete. The domino treewidth problem is hard for the complexity classes W [t] for all t 2 N, and hence the problem for fixed k is unlikely to be solvable in O(n c), where c is a constant, not depending on k.
Pure Nash Equilibria: Hard and Easy Games
"... In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then s ..."
Abstract

Cited by 81 (4 self)
 Add to MetaCart
(Show Context)
In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each player's move depends on moves of other players. We say that a game has small neighborhood if the &quot; utility function for each player depends only on (the actions of) a logarithmically small number of other players, The dependency structure of a game G can he expressed by a graph G(G) or by a hypergraph II(G). Among other results, we show that if jC has small neighborhood and if II(G) has botmdecl hypertree width (or if G(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFLcomplete and thus in the class _NC ~ of highly parallelizable problems. 1 Introduction and Overview of Results The theory of strategic games and Nash equilibria has important applications in economics and decision making [31, 2]. Determining whether Nash equilibria exist, and effectively computing
On the fixed parameter complexity of graph enumeration problems definable in monadic secondorder logic
, 2001
"... ..."
Learning markov networks: maximum bounded treewidth graphs
 In Proceedings of the 12th ACMSIAM Symposium on Discrete Algorithms
, 2001
"... AbstractMarkov networks are a common class of graphical models used in machine learning. Such models use an undirected graph tocapture dependency information among random variables in a joint probability distribution. Once one has chosen to use a Markovnetwork model, one aims to choose the model tha ..."
Abstract

Cited by 73 (6 self)
 Add to MetaCart
AbstractMarkov networks are a common class of graphical models used in machine learning. Such models use an undirected graph tocapture dependency information among random variables in a joint probability distribution. Once one has chosen to use a Markovnetwork model, one aims to choose the model that &quot;best explains &quot; the data that has been observedthis model can then be used tomake predictions about future data. We show that the problem of learning a maximum likelihoodMarkov network given certain observed data can be reduced to the problem of identifying a maximum weight lowtreewidth graphunder a given input weight function. We give the first constant factor approximation algorithm for this problem. More precisely,for any fixed treewidth objective k, we find a treewidthk graph withan f(k) fraction of the maximum possible weight of any treewidthk graph. 1 Introduction In this paper, we study a generalization of the maximumspanning tree problem: finding a maximum weight subgraph