Results 1  10
of
52
Specification and Proof in Membership Equational Logic
 Theoretical Computer Science
, 1996
"... : This paper is part of a longterm effort to increase expressiveness of algebraic specification languages while at the same time having a simple semantic basis on which efficient execution by rewriting and powerful theoremproving tools can be based. In particular, our rewriting techniques provide ..."
Abstract

Cited by 104 (49 self)
 Add to MetaCart
: This paper is part of a longterm effort to increase expressiveness of algebraic specification languages while at the same time having a simple semantic basis on which efficient execution by rewriting and powerful theoremproving tools can be based. In particular, our rewriting techniques provide semantic foundations for Maude's functional sublanguage, where they have been efficiently implemented. Membership equational logic is quite simple, and yet quite powerful. Its atomic formulae are equations and sort membership assertions, and its sentences are Horn clauses. It extends in a conservative way both ordersorted equational logic and partial algebra approaches, while Horn logic can be very easily encoded. After introducing the basic concepts of the logic, we give conditions and proof rules with which efficient equational deduction by rewriting can be achieved. We also give completion techniques to transform a specification into one meeting these conditions. We address the important ...
Tensor products and homotopies for ωgroupoids and crossed complexes
, 2007
"... Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed comp ..."
Abstract

Cited by 43 (21 self)
 Add to MetaCart
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product involves nonabelian constructions related to the commutator calculus and the homotopy addition lemma. This monoidal closed structure is derived from that on the equivalent category of ωgroupoids where the underlying cubical structure gives geometrically natural definitions of tensor products and homotopies.
Categories and groupoids
, 1971
"... In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, 37, 58, 65] 1). By contrast, the use of groupoids was confined to a small number of pioneering articles, notably by Ehresmann [12] and Mackey [57], which were largely ignored by the mathematical community. Indeed groupoids were generally considered at that time not to be a subject for serious study. It was argued by several wellknown mathematicians that group theory sufficed for all situations where groupoids might be used, since a connected groupoid could be reduced to a group and a set. Curiously, this argument, which makes no appeal to elegance, was not applied to vector spaces: it was well known that the analogous reduction in this case is not canonical, and so is not available, when there is extra structure, even such simple structure as an endomorphism. Recently, Corfield in [41] has discussed methodological issues in mathematics with this topic, the resistance to the notion of groupoids, as a prime example. My book was intended chiefly as an attempt to reverse this general assessment of the time by presenting applications of groupoids to group theory
Process and Term Tile Logic
, 1998
"... In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis o ..."
Abstract

Cited by 33 (25 self)
 Add to MetaCart
In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis of several language implementation efforts, it is useful to map tile logic back into rewriting logic in a conservative way, to obtain executable specifications of tile systems. We extend the results of earlier work by two of the authors, focusing on some interesting cases where the mathematical structures representing configurations (i.e., states) and effects (i.e., observable actions) are very similar, in the sense that they have in common some auxiliary structure (e.g., for tupling, projecting, etc.). In particular, we give in full detail the descriptions of two such cases where (net) processlike and usual term structures are employed. Corresponding to these two cases, we introduce two ca...
Variations on Algebra: monadicity and generalisations of equational theories
 Formal Aspects of Computing
, 2001
"... this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM
A Syntactic Approach to Modularity in Denotational Semantics
 IN PROCEEDINGS OF THE CONFERENCE ON CATEGORY THEORY AND COMPUTER SCIENCE
, 1993
"... This paper proposes a syntactic reformulation of the modular approach to Denotational Semantics in [Mog89a, Mog91a]. This reformulation is based on a duality between model constructions and translations of theories (often called relative interpretations), analogous to GabrielUlmer duality. To de ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
This paper proposes a syntactic reformulation of the modular approach to Denotational Semantics in [Mog89a, Mog91a]. This reformulation is based on a duality between model constructions and translations of theories (often called relative interpretations), analogous to GabrielUlmer duality. To demonstrate the simplicity and usability of the syntactic reformulation, we give a sample of theories and translations, which can be used to give semantics to concurrent languages (via translation into suitable metalanguages).
An Axiomatics for Categories of Coalgebras
, 1998
"... We give an axiomatic account of what structure on a category C and an endofunctor H on C yield similar structure on the category H0Coalg of Hcoalgebras. We give conditions under which completeness, cocompleteness, symmetric monoidal closed structure, local presentability, and subobject classifiers ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
We give an axiomatic account of what structure on a category C and an endofunctor H on C yield similar structure on the category H0Coalg of Hcoalgebras. We give conditions under which completeness, cocompleteness, symmetric monoidal closed structure, local presentability, and subobject classifiers lift. Our proof of the latter uses a general result about the existence of a subobject classifier in a category containing a small dense subcategory. Our leading example has C = Set with H the endofunctor for which a coalgebra is a finitely branching (labelled) transition system. We explain that example in detail. 1 Introduction Given an endofunctor H on the category Set, an Hcoalgebra is a set X together with a function x : X 0! HX. A leading example of such an H is given by the functor P ! that takes a set X to the set of finite subsets of X , with the behaviour of H on maps given by direct image. An Hcoalgebra is then a finitely branching transition system. A variant, is given by sta...
Equivalences among Various Logical Frameworks of Partial Algebras
 Computer Science Logic. 9th Workshop, CSL'95. Paderborn
, 1996
"... We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, re ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, respectively. They faithfully represent theories, model categories, theory morphisms, colimit of theories, reducts etc. Moreover, along simple and conjunctive embeddings, theorem provers can be reused in a way that soundness and completeness is preserved. Our main result states the equivalence of all the logical frameworks with respect to weak embeddability. This gives us compilers between all frameworks. Thus it is a chance to unify the different branches of specification using liberal partial logics. This is important for reaching the goal of formal interoperability of different specification languages for software development. With formal interoperability, a specification can contain part...
The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
, 2007
"... Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future.
Understanding the small object argument
 Applied Categorical Structures
, 2008
"... The small object argument is a transfinite construction which, starting from a set of maps in a category, generates a weak factorisation system on that ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
The small object argument is a transfinite construction which, starting from a set of maps in a category, generates a weak factorisation system on that