Results 1  10
of
15
Explicit Provability And Constructive Semantics
 Bulletin of Symbolic Logic
, 2001
"... In 1933 G odel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that G odel's provability calculus is noth ..."
Abstract

Cited by 117 (22 self)
 Add to MetaCart
In 1933 G odel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that G odel's provability calculus is nothing but the forgetful projection of LP. This also achieves G odel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a BrouwerHeytingKolmogorov style provability semantics for Int which resisted formalization since the early 1930s. LP may be regarded as a unified underlying structure for intuitionistic, modal logics, typed combinatory logic and #calculus.
Science, Computational Science and Computer Science: At a Crossroads
 Comm. ACM
, 1993
"... We describe computational science as an interdisciplinary approach to doing science on computers. Our purpose is to introduce computational science as a legitimate interest of computer scientists. We present a foundation for computational science based on the need to incorporate computation at the s ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
We describe computational science as an interdisciplinary approach to doing science on computers. Our purpose is to introduce computational science as a legitimate interest of computer scientists. We present a foundation for computational science based on the need to incorporate computation at the scientific level; i.e., computational aspects must be considered when a model is formulated. We next present some obstacles to computer scientists' participation in computational science, including a cultural bias in computer science that inhibits participation. Finally, we look at some areas of conventional computer science and indicate areas of mutual interest between computational science and computer science. Keywords: education, computational science. 1 What is Computational Science ? In December, 1991, the U. S. Congress passed the High Performance Computing and Communications Act, commonly known as the HPCC . This act focuses on several aspects of computing technology, but two have...
A formulaeastypes interpretation of subtractive logic
 Journal of Logic and Computation
, 2004
"... We present a formulaeastypes interpretation of Subtractive Logic (i.e. biintuitionistic logic). This presentation is twofold: we first define a very natural restriction of the λµcalculus which is closed under reduction and whose type system is a constructive restriction of the Classical Natural ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
We present a formulaeastypes interpretation of Subtractive Logic (i.e. biintuitionistic logic). This presentation is twofold: we first define a very natural restriction of the λµcalculus which is closed under reduction and whose type system is a constructive restriction of the Classical Natural Deduction. Then we extend this deduction system conservatively to Subtractive Logic. From a computational standpoint, the resulting calculus provides a type system for firstclass coroutines (a restricted form of firstclass continuations). Keywords: CurryHoward isomorphism, Subtractive Logic, control operators, coroutines. 1
The Inverse Method
, 2001
"... this paper every formula is equivalent to a formula in negation normal form ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
this paper every formula is equivalent to a formula in negation normal form
Cover semantics for quantified lax logic
 Journal of Logic and Computation
"... Lax modalities occur in intuitionistic logics concerned with hardware verification, the computational lambda calculus, and access control in secure systems. They also encapsulate the logic of LawvereTierneyGrothendieck topologies on topoi. This paper provides a complete semantics for quantified la ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Lax modalities occur in intuitionistic logics concerned with hardware verification, the computational lambda calculus, and access control in secure systems. They also encapsulate the logic of LawvereTierneyGrothendieck topologies on topoi. This paper provides a complete semantics for quantified lax logic by combining the BethKripkeJoyal cover semantics for firstorder intuitionistic logic with the classical relational semantics for a “diamond ” modality. The main technique used is the lifting of a multiplicative closure operator (nucleus) from a Heyting algebra to its MacNeille completion, and the representation of an arbitrary locale as the lattice of “propositions ” of a suitable cover system. In addition, the theory is worked out for certain constructive versions of the classical logics K and S4. An alternative completeness proof is given for (nonmodal) firstorder intuitionistic logic itself with respect to the cover semantics, using a simple and explicit Henkinstyle construction of a characteristic model whose points are principal theories rather than prime saturated ones. The paper provides further evidence that there is more to intuitionistic modal logic than the generalisation of properties of boxes and diamonds from Boolean modal logic.
THE INFORMATION IN INTUITIONISTIC LOGIC
 TO APPEAR IN SYNTHESE SPECIAL ISSUE ON ‘PHILOSOPHY OF INFORMATION’
, 2008
"... ..."
unknown title
, 905
"... Simple proof of the completeness theorem for second order classical and intuitionistic logic by reduction to firstorder monosorted logic ∗ ..."
Abstract
 Add to MetaCart
Simple proof of the completeness theorem for second order classical and intuitionistic logic by reduction to firstorder monosorted logic ∗
History of constructivism in the 20th century
"... In this survey of the history of constructivism, more space has been devoted to early developments (up till ca 1965) than to the work of the last few decades. Not only because most of the concepts and general insights have emerged before 1965, ..."
Abstract
 Add to MetaCart
In this survey of the history of constructivism, more space has been devoted to early developments (up till ca 1965) than to the work of the last few decades. Not only because most of the concepts and general insights have emerged before 1965,
unknown title
, 2009
"... Simple proof of the completeness theorem for second order classical and intuitionistic logic by reduction to firstorder monosorted logic ∗ ..."
Abstract
 Add to MetaCart
Simple proof of the completeness theorem for second order classical and intuitionistic logic by reduction to firstorder monosorted logic ∗