Results 1  10
of
61
Model selection and accounting for model uncertainty in graphical models using Occam's window
, 1993
"... We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection o ..."
Abstract

Cited by 293 (46 self)
 Add to MetaCart
We consider the problem of model selection and accounting for model uncertainty in highdimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic Pvalues leading to the selection of a single model; inference is then conditional on the selected model. The sampling properties of such a strategy are complex, and the failure to take account of model uncertainty leads to underestimation of uncertainty about quantities of interest. In principle, a panacea is provided by the standard Bayesian formalism which averages the posterior distributions of the quantity of interest under each of the models, weighted by their posterior model probabilities. Furthermore, this approach is optimal in the sense of maximising predictive ability. However, this has not been used in practice because computing the posterior model probabilities is hard and the number of models is very large (often greater than 1011). We argue that the standard Bayesian formalism is unsatisfactory and we propose an alternative Bayesian approach that, we contend, takes full account of the true model uncertainty byaveraging overamuch smaller set of models. An efficient search algorithm is developed for nding these models. We consider two classes of graphical models that arise in expert systems: the recursive causal models and the decomposable
Posterior Predictive Assessment of Model Fitness Via Realized Discrepancies
 Statistica Sinica
, 1996
"... Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The B ..."
Abstract

Cited by 210 (32 self)
 Add to MetaCart
(Show Context)
Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The Bayesian formulation facilitates the construction and calculation of a meaningful reference distribution not only for any (classical) statistic, but also for any parameterdependent “statistic ” or discrepancy. The latter allows us to propose the realized discrepancy assessment of model fitness, which directly measures the true discrepancy between data and the posited model, for any aspect of the model which we want to explore. The computation required for the realized discrepancy assessment is a straightforward byproduct of the posterior simulation used for the original Bayesian analysis. We illustrate with three applied examples. The first example, which serves mainly to motivate the work, illustrates the difficulty of classical tests in assessing the fitness of a Poisson model to a positron emission tomography image that is constrained to be nonnegative. The second and third examples illustrate the details of the posterior predictive approach in two problems: estimation in a model with inequality constraints on the parameters, and estimation in a mixture model. In all three examples, standard test statistics (either a χ 2 or a likelihood ratio) are not pivotal: the difficulty is not just how to compute the reference distribution for the test, but that in the classical framework no such distribution exists, independent of the unknown model parameters. Key words and phrases: Bayesian pvalue, χ 2 test, discrepancy, graphical assessment, mixture model, model criticism, posterior predictive pvalue, prior predictive
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 179 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Unsupervised Learning from Dyadic Data
, 1998
"... Dyadic data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This includes event cooccurrences, histogram data, and single stimulus preference data as special cases. Dyadic data arises naturally in many applic ..."
Abstract

Cited by 105 (9 self)
 Add to MetaCart
Dyadic data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This includes event cooccurrences, histogram data, and single stimulus preference data as special cases. Dyadic data arises naturally in many applications ranging from computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domainindependent framework for unsupervised learning from dyadic data by statistical mixture models. Our approach covers different models with flat and hierarchical latent class structures and unifies probabilistic modeling and structure discovery. Mixture models provide both, a parsimonious yet flexible parameterization of probability distributions with good generalization performance on sparse data, as well as structural information about datainherent grouping structure. We propose an annealed version of the standard Expectation Maximization algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains.
A characterization of Markov equivalence classes for acyclic digraphs
, 1995
"... Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow e ..."
Abstract

Cited by 95 (7 self)
 Add to MetaCart
Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. Whereas the undirected graph associated with a dependence model is uniquely determined, there may, however, be many ADGs that determine the same dependence ( = Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Here it is shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself simultaneously Markov equivalent to all ADGs in the equivalence class. Essential graphs are characterized, a polynomialtime algorithm for their construction is given, and their applications to model selection and other statistical
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 51 (4 self)
 Add to MetaCart
(Show Context)
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
An Alternative Markov Property for Chain Graphs
 Scand. J. Statist
, 1996
"... Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially conv ..."
Abstract

Cited by 51 (5 self)
 Add to MetaCart
Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially convenient for statistical analysis, arise in such fields as genetics and psychometrics and as models for expert systems and Bayesian belief networks. Lauritzen, Wermuth, and Frydenberg (LWF) introduced a Markov property for chain graphs, which are mixed graphs that can be used to represent simultaneously both causal and associative dependencies and which include both UDGs and ADGs as special cases. In this paper an alternative Markov property (AMP) for chain graphs is introduced, which in some ways is a more direct extension of the ADG Markov property than is the LWF property for chain graph. 1 INTRODUCTION Graphical Markov models use graphs, either undirected, directed, or mixed, to represent...
Learning Probabilistic Networks
 THE KNOWLEDGE ENGINEERING REVIEW
, 1998
"... A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combini ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.