Results 1  10
of
189
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Learning polynomials with queries: The highly noisy case
, 1995
"... Given a function f mapping nvariate inputs from a finite Kearns et. al. [21] (see also [27, 28, 22]). In the setting of agfieldFintoF, we consider the task of reconstructing a list nostic learning, the learner is to make no assumptions regarding of allnvariate degreedpolynomials which agree withf ..."
Abstract

Cited by 87 (18 self)
 Add to MetaCart
Given a function f mapping nvariate inputs from a finite Kearns et. al. [21] (see also [27, 28, 22]). In the setting of agfieldFintoF, we consider the task of reconstructing a list nostic learning, the learner is to make no assumptions regarding of allnvariate degreedpolynomials which agree withfon a the natural phenomena underlying the input/output relationship tiny but nonnegligible fraction, , of the input space. We give a of the function, and the goal of the learner is to come up with a randomized algorithm for solving this task which accessesfas a simple explanation which best fits the examples. Therefore the black box and runs in time polynomial in1;nand exponential in best explanation may account for only part of the phenomena. d, provided is(pd=jFj). For the special case whend=1, In some situations, when the phenomena appears very irregular, we solve this problem for jFj>0. In this case the providing an explanation which fits only part of it is better than nothing. Interestingly, Kearns et. al. did not consider the use of running time of our algorithm is bounded by a polynomial queries (but rather examples drawn from an arbitrary distribuand exponential ind. Our algorithm generalizes a previously tion) as they were skeptical that queries could be of any help. known algorithm, due to Goldreich and Levin, that solves this We show that queries do seem to help (see below). task for the case whenF=GF(2)(andd=1).
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 82 (16 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
When polynomial equation systems can be "solved" fast?
 IN PROC. 11TH INTERNATIONAL SYMPOSIUM APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERRORCORRECTING CODES, AAECC11
, 1995
"... We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measu ..."
Abstract

Cited by 62 (18 self)
 Add to MetaCart
We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measured by the size of these networks we obtain the following result: it is possible to solve any affine or toric zerodimensional equation system in nonuniform sequential time which is polynomial in the length of the input description and the "geometric degree " of the equation system. Here, the input is thought to be given by a straightline program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). Geometric degree has to be adequately defined. It is always bounded by the algebraiccombinatoric "B'ezout number " of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than
Straightline programs in geometric elimination theory
 J. Pure Appl. Algebra
, 1998
"... Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line prog ..."
Abstract

Cited by 58 (14 self)
 Add to MetaCart
Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line programs. For sequential time complexity measured by network size we obtain the following result: it is possible to solve any affine or toric zero–dimensional equation system in non–uniform sequential time which is polynomial in the length of the input description and the “geometric degree ” of the equation system. Here, the input is thought to be given by a straight–line program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). The geometric degree of the input system has to be adequately defined. It is always bounded by the algebraic–combinatoric “Bézout number ” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric
Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers
 J. Complexity
, 2000
"... We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set o ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set of points obtained from the intersection of the component with a generic transverse affine subspace. Our algorithm is incremental in the number of equations to be solved. Its complexity is mainly cubic in the maximum of the degrees of the solution sets of the intermediate systems counting multiplicities. Our method is designed for coefficient fields having characteristic zero or big enough with respect to the number of solutions. If the base field is the field of the rational numbers then the resolution is first performed modulo a random prime number after we have applied a random change of coordinates. Then we search for coordinates with small integers and lift the solutions up to the rational numbers. Our implementation is available within our package Kronecker from version 0.166, which is written in the Magma computer algebra system. 1
Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields
 SIAM J. COMPUT
, 1990
"... The authors consider the problem of reconstructing (i.e., interpolating) a tsparse multivariate polynomial given a black box which will produce the value of the polynomial for any value of the arguments. It is shown that, if the polynomial has coefficients in a finite field GF[q] and the black box ..."
Abstract

Cited by 52 (12 self)
 Add to MetaCart
The authors consider the problem of reconstructing (i.e., interpolating) a tsparse multivariate polynomial given a black box which will produce the value of the polynomial for any value of the arguments. It is shown that, if the polynomial has coefficients in a finite field GF[q] and the black box can evaluate the polynomial in the field GF[qr2g,tnt+37], where n is the number of variables, then there is an algorithm to interpolate the polynomial in O(log (nt)) boolean parallel time and O(n2t log nt) processors. This algorithm yields the first efficient deterministic polynomial time algorithm (and moreover boolean NCalgorithm) for interpolating tsparse polynomials over finite fields and should be contrasted with the fact that efficient interpolation using a black box that only evaluates the polynomial at points in GF[q] is
Factoring Multivariate Polynomials via Partial Differential Equations
 Math. Comput
, 2000
"... A new method is presented for factorization of bivariate polynomials over any field of characteristic zero or of relatively large characteristic. It is based on a simple partial differential equation that gives a system of linear equations. Like Berlekamp's and Niederreiter's algorithms for factorin ..."
Abstract

Cited by 51 (9 self)
 Add to MetaCart
A new method is presented for factorization of bivariate polynomials over any field of characteristic zero or of relatively large characteristic. It is based on a simple partial differential equation that gives a system of linear equations. Like Berlekamp's and Niederreiter's algorithms for factoring univariate polynomials, the dimension of the solution space of the linear system is equal to the number of absolutely irreducible factors of the polynomial to be factored and any basis for the solution space gives a complete factorization by computing gcd's and by factoring univariate polynomials over the ground field. The new method finds absolute and rational factorizations simultaneously and is easy to implement for finite fields, local fields, number fields, and the complex number field. The theory of the new method allows an effective Hilbert irreducibility theorem, thus an efficient reduction of polynomials from multivariate to bivariate.
Greatest Common Divisors of Polynomials Given by StraightLine Programs
 J. ACM
, 1988
"... . F Algorithms on multivariate polynomials represented by straightline programs are developed irst it is shown that most algebraic algorithms can be probabilistically applied to data that is given by y r a straightline computation. Testing such rational numeric data for zero, for instance, is faci ..."
Abstract

Cited by 51 (18 self)
 Add to MetaCart
. F Algorithms on multivariate polynomials represented by straightline programs are developed irst it is shown that most algebraic algorithms can be probabilistically applied to data that is given by y r a straightline computation. Testing such rational numeric data for zero, for instance, is facilitated b andom evaluations modulo random prime numbers. Then auxiliary algorithms are constructed that a determine the coefficients of a multivariate polynomial in a single variable. The first main result is an lgorithm that produces the greatest common divisor of the input polynomials, all in straightline r a representation. The second result shows how to find a straightline program for the reduced numerato nd denominator from one for the corresponding rational function. Both the algorithm for that conl c struction and the greatest common divisor algorithm are in random polynomialtime for the usua oefficient fields and output a straightline program, which with controllably high probab...
Reconstructing algebraic functions from mixed data. FOCS
, 1992
"... We consider the task of reconstructing algebraic functions given by black boxes. Unlike traditional settings, we are interested in black boxes which represent several algebraic functionsf1;:::;fk, where at each inputx, the box arbitrarily chooses a subset off1(x);:::;fk(x)to output. We show how to ..."
Abstract

Cited by 51 (11 self)
 Add to MetaCart
We consider the task of reconstructing algebraic functions given by black boxes. Unlike traditional settings, we are interested in black boxes which represent several algebraic functionsf1;:::;fk, where at each inputx, the box arbitrarily chooses a subset off1(x);:::;fk(x)to output. We show how to reconstruct the functionsf1;:::;fkfrom the black box. This allows us to group the sample points into sets, such that for each set, all outputs to points in the set are from the same algebraic function. Our methods are robust in the presence of errors in the black box. Our model and techniques can be applied in the areas of computer vision, machine learning, curve fitting and polynomial approximation, selfcorrecting programs and bivariate polynomial factorization. 1