Results 11  20
of
201
The Expressive Power of Voting Polynomials
 Combinatorica
, 1993
"... We consider the problem of approximating a Boolean function f : f0; 1g n ! f0; 1g by the sign of an integer polynomial p of degree k. For us, a polynomial p(x) predicts the value of f(x) if, whenever p(x) 0, f(x) = 1, and whenever p(x) ! 0, f(x) = 0. A lowdegree polynomial p is a good approxima ..."
Abstract

Cited by 97 (9 self)
 Add to MetaCart
We consider the problem of approximating a Boolean function f : f0; 1g n ! f0; 1g by the sign of an integer polynomial p of degree k. For us, a polynomial p(x) predicts the value of f(x) if, whenever p(x) 0, f(x) = 1, and whenever p(x) ! 0, f(x) = 0. A lowdegree polynomial p is a good approximator for f if it predicts f at almost all points. Given a positive integer k, and a Boolean function f , we ask, "how good is the best degree k approximation to f?" We introduce a new lower bound technique which applies to any Boolean function. We show that the lower bound technique yields tight bounds in the case f is parity. Minsky and Papert [10] proved that a perceptron can not compute parity; our bounds indicate exactly how well Yale University, Dept. of Computer Science, P.O. Box 208285, New Haven CT 065208285. y Email: aspnesjames@cs.yale.edu. z Email: beigelrichard@cs.yale.edu. Supported in part by NSF grants CCR8808949 and CCR8958528. x CarnegieMellon University, Schoo...
Lower Bounds for the Size of Circuits of Bounded Depth in Basis
, 1986
"... this paper, we consider circuits of bounded depth in the basis f; \Phig. ..."
Abstract

Cited by 83 (0 self)
 Add to MetaCart
this paper, we consider circuits of bounded depth in the basis f; \Phig.
Polynomial size proofs of the propositional pigeonhole principle
 Journal of Symbolic Logic
, 1987
"... Abstract. Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege syste ..."
Abstract

Cited by 75 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic. $1. Introduction. The motivation for this paper comes primarily from two sources. First, Cook and Reckhow [2] and Statman [7] discussed connections between lengths of proofs in propositional logic and open questions in computational complexity such as whether NP = coNP. Cook and Reckhow used the propositional pigeonhole principle as an example of a family of true formulae which
The polynomial method in circuit complexity
 In Proceedings of the 8th Annual Conference on Structure in Complexity Theory
, 1993
"... ..."
(Show Context)
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
An Exponential Lower Bound to the Size of Bounded Depth Frege . . .
, 1994
"... We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for whic ..."
Abstract

Cited by 69 (9 self)
 Add to MetaCart
We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic
 IN IZVESTIYA OF THE RUSSIAN ACADEMY OF SCIENCE, MATHEMATICS
, 1995
"... We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by smal ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
(Show Context)
We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constantdepth circuits, this is shown without using any unproven hardness assumptions. These results can be also viewed as direct corollaries of interpolationlike theorems for certain “split versions” of classical systems of Bounded Arithmetic introduced in this paper.
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract

Cited by 54 (1 self)
 Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies