Results 1  10
of
174
Improved Decoding of ReedSolomon and AlgebraicGeometry Codes
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1999
"... Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding ReedSolomon codes ..."
Abstract

Cited by 245 (40 self)
 Add to MetaCart
Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding ReedSolomon codes. The list decoding problem for ReedSolomon codes reduces to the following "curvefitting" problem over a field F : Given n points f(x i :y i )g i=1 , x i
A Fuzzy Commitment Scheme
 ACM CCS'99
, 1999
"... We combine wellknown techniques from the areas of errorcorrecting codes and cryptography to achieve a new type of cryptographic primitive that we refer to as a fuzzy commitment scheme. Like a conventional cryptographic commitment scheme, our fuzzy commitment scheme is both concealing and binding: i ..."
Abstract

Cited by 204 (1 self)
 Add to MetaCart
We combine wellknown techniques from the areas of errorcorrecting codes and cryptography to achieve a new type of cryptographic primitive that we refer to as a fuzzy commitment scheme. Like a conventional cryptographic commitment scheme, our fuzzy commitment scheme is both concealing and binding: it is infeasible for an attacker to learn the committed value, and also for the committer to decommit a value in more than one way. In a conventional scheme, a commitment must be opened using a unique witness, which acts, essentially, as a decryption key. By contrast, our scheme is fuzzy in the sense that it accepts a witness that is close to the original encrypting witness in a suitable metric, but not necessarily identical. This characteristic of our fuzzy commitment scheme makes it useful for applications such as biometric authentication systems, in which data is subject to random noise. Because the scheme is tolerant of error, it is capable of protecting biometric data just as conventional cryptographic techniques, like hash functions, are used to protect alphanumeric passwords. This addresses a major outstanding problem in the theory of biometric authentication. We prove the security characteristics of our fuzzy commitment scheme relative to the properties of an underlying cryptographic hash function.
Revealing information while preserving privacy
 In PODS
, 2003
"... We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an nbit string d1,.., dn, with a query being a subset q ⊆ [n] to be answered by � i∈q di. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset ..."
Abstract

Cited by 199 (10 self)
 Add to MetaCart
We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an nbit string d1,.., dn, with a query being a subset q ⊆ [n] to be answered by � i∈q di. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset sums. Applying this reconstruction algorithm to statistical databases we show that in order to achieve privacy one has to add perturbation of magnitude Ω ( √ n). That is, smaller perturbation always results in a strong violation of privacy. We show that this result is tight by exemplifying access algorithms for statistical databases that preserve privacy while adding perturbation of magnitude Õ(√n). For timeT bounded adversaries we demonstrate a privacypreserving access algorithm whose perturbation magnitude is ≈ √ T. 1
An algebraic approach to IP traceback
 ACM Transactions on Information and System Security
, 2002
"... We present a new solution to the problem of determining the path a packet traversed over the Internet (called the traceback problem) during a denial of service attack. This paper reframes the traceback problem as a polynomial reconstruction problem and uses algebraic techniques from coding theory an ..."
Abstract

Cited by 184 (0 self)
 Add to MetaCart
We present a new solution to the problem of determining the path a packet traversed over the Internet (called the traceback problem) during a denial of service attack. This paper reframes the traceback problem as a polynomial reconstruction problem and uses algebraic techniques from coding theory and learning theory to provide robust methods of transmission and reconstruction. 1
Improved lowdegree testing and its applications
 IN 29TH STOC
, 1997
"... NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The stro ..."
Abstract

Cited by 145 (18 self)
 Add to MetaCart
NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The strongest previously known connection for this test states that a function passes the test with probability 6 for some d> 7/8 iff the function has agreement N 6 with a polynomial of degree d. We presenta new, and surprisingly strong,analysiswhich shows thatthepreceding statementis truefor 6<<0.5. The analysis uses a version of Hilbe?l irreducibility, a tool used in the factoring of multivariate polynomials. As a consequence we obtain an alternate construction for the following proof system: A constant prover lround proof system for NP languages in which the verifier uses O(log n) random bits, receives answers of size O(log n) bits, and has an error probability of at most 2 – 10g*‘’. Such a proof system, which implies the NPhardness of approximating Set Cover to within fl(log n) factors, has already been obtained by Raz and Safra [28]. Our result was completed after we heard of their claim. A second consequence of our analysis is a self testerlcorrector for any buggy program that (supposedly) computes a polynomial over a finite field. If the program is correct only on 6 fraction of inputs where 15<<0.5, then the tester/corrector determines J and generates 0(~) randomized programs, such that one of the programs is correct on every input, with high probability.
Pseudorandom generators without the XOR Lemma
, 1998
"... Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a serie ..."
Abstract

Cited by 127 (20 self)
 Add to MetaCart
Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of "hardness amplification" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan Wigderson [NW94] generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardnessrandomness tradeoffs. Our first result is that when (a modified version of) the NisanWigderson generator construction is applied with a "mildly" hard predicate, the result is a generator that produces a distribution indistinguishable from having large minentropy. An extractor can then be used to produce a distribution computationally indistinguishable from uniform. This is the first construction of a pseudorandom generator that works with a mildly hard predicate without doing hardness amplification. We then show that in the ImpagliazzoWigderson construction only the first hardnessamplification phase (encoding with multivariate polynomial) is necessary, since it already gives the required averagecase hardness. We prove this result by (i) establishing a connection between the hardnessamplification problem and a listdecoding...
Simple Extractors for All MinEntropies and a New PseudoRandom Generator
 Journal of the ACM
, 2001
"... A “randomness extractor ” is an algorithm that given a sample from a distribution with sufficiently high minentropy and a short random seed produces an output that is statistically indistinguishable from uniform. (Minentropy is a measure of the amount of randomness in a distribution). We present a ..."
Abstract

Cited by 107 (30 self)
 Add to MetaCart
A “randomness extractor ” is an algorithm that given a sample from a distribution with sufficiently high minentropy and a short random seed produces an output that is statistically indistinguishable from uniform. (Minentropy is a measure of the amount of randomness in a distribution). We present a simple, selfcontained extractor construction that produces good extractors for all minentropies. Our construction is algebraic and builds on a new polynomialbased approach introduced by TaShma, Zuckerman, and Safra [TSZS01]. Using our improvements, we obtain, for example, an extractor with output length m = k/(log n) O(1/α) and seed length (1 + α) log n for an arbitrary 0 < α ≤ 1, where n is the input length, and k is the minentropy of the input distribution. A “pseudorandom generator ” is an algorithm that given a short random seed produces a long output that is computationally indistinguishable from uniform. Our technique also gives a new way to construct pseudorandom generators from functions that require large circuits. Our pseudorandom generator construction is not based on the NisanWigderson generator [NW94], and turns worstcase hardness directly into pseudorandomness. The parameters of our generator match those in [IW97, STV01] and in particular are strong enough to obtain a new proof that P = BP P if E requires exponential size circuits.
Algebraic SoftDecision Decoding of ReedSolomon Codes
 IEEE Trans. Inform. Theory
, 2001
"... A polynomialtime softdecision decoding algorithm for ReedSolomon codes is developed. ..."
Abstract

Cited by 105 (13 self)
 Add to MetaCart
A polynomialtime softdecision decoding algorithm for ReedSolomon codes is developed.
Learning polynomials with queries: The highly noisy case
, 1995
"... Given a function f mapping nvariate inputs from a finite Kearns et. al. [21] (see also [27, 28, 22]). In the setting of agfieldFintoF, we consider the task of reconstructing a list nostic learning, the learner is to make no assumptions regarding of allnvariate degreedpolynomials which agree withf ..."
Abstract

Cited by 87 (18 self)
 Add to MetaCart
Given a function f mapping nvariate inputs from a finite Kearns et. al. [21] (see also [27, 28, 22]). In the setting of agfieldFintoF, we consider the task of reconstructing a list nostic learning, the learner is to make no assumptions regarding of allnvariate degreedpolynomials which agree withfon a the natural phenomena underlying the input/output relationship tiny but nonnegligible fraction, , of the input space. We give a of the function, and the goal of the learner is to come up with a randomized algorithm for solving this task which accessesfas a simple explanation which best fits the examples. Therefore the black box and runs in time polynomial in1;nand exponential in best explanation may account for only part of the phenomena. d, provided is(pd=jFj). For the special case whend=1, In some situations, when the phenomena appears very irregular, we solve this problem for jFj>0. In this case the providing an explanation which fits only part of it is better than nothing. Interestingly, Kearns et. al. did not consider the use of running time of our algorithm is bounded by a polynomial queries (but rather examples drawn from an arbitrary distribuand exponential ind. Our algorithm generalizes a previously tion) as they were skeptical that queries could be of any help. known algorithm, due to Goldreich and Levin, that solves this We show that queries do seem to help (see below). task for the case whenF=GF(2)(andd=1).
Unbalanced expanders and randomness extractors from parvareshvardy codes
 In Proceedings of the 22nd Annual IEEE Conference on Computational Complexity
, 2007
"... We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous ..."
Abstract

Cited by 77 (7 self)
 Add to MetaCart
We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of righthand vertices are polynomially close to optimal, whereas the previous constructions of TaShma, Umans, and Zuckerman (STOC ‘01) required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and selfcontained description and analysis, based on the ideas underlying the recent listdecodable errorcorrecting codes of Parvaresh and Vardy (FOCS ‘05). Our expanders can be interpreted as nearoptimal “randomness condensers, ” that reduce the task of extracting randomness from sources of arbitrary minentropy rate to extracting randomness from sources of minentropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. (STOC ‘03) and improving upon it when the error parameter is small (e.g. 1/poly(n)).