Results 1 
4 of
4
An application of boolean complexity to separation problems in bounded arithmetic
 Proc. London Math. Society
, 1994
"... We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search ( ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search (PLS) problems. Although it is still an open problem whether bounded arithmetic S2 is finitely axiomatizable, considerable progress on this question has been made: S2 +1 is V2f+1conservative over T'2 [3], but it is not V2!f+2conservative unless £f+2 = Ylf+2 [10], and in addition, T2 is not VZf+1conservative over S'2 unless LogSpace s? = Af+1 [8]. In particular, S2 is not finitely axiomatizable provided that the polynomialtime hierarchy does not collapse [10]. For the theory S2(a) these results imply (with some additional arguments) absolute results: S'2 + (a) is V2f+,(a)conservative but not VZf+2(a)conservative over T'2(a), and T'2(a) is not VZf+i(c*)conservative over S'2(a). Here a represents a new uninterpreted predicate symbol adjoined to the language of arithmetic which may be used in induction formulas; from a computer science perspective, a represents an oracle. In this paper we pursue this line of investigation further by showing that T'2(a) is also not V2f(a)conservative over S'2(a). This was known for / = 1, 2 by [9,17] (see also [2]), and our present proof uses a version of the pigeonhole principle similar to the arguments in [2,9]. Perhaps more importantly, we formulate a general method (Theorem 2.6) which can be used to show the unprovability of other 2f(a)formulas from S'2(a). Our methods are analogous in spirit to the proof strategy of [8]: prove a witnessing theorem to show that provability of a Zf+1(a)formula A in S'2(a) implies that it is witnessed by a function of certain complexity and then employ techniques of boolean complexity to construct an oracle a such that the formula A cannot be witnessed by a function of the prescribed complexity. Our formula A shall be 2f(a) and thus we can use the original witnessing theorem of [2]. The boolean complexity used is the same as in [8], namely Hastad's switching lemmas [6].
Relating the Bounded Arithmetic and Polynomial Time Hierarchies
 Annals of Pure and Applied Logic
, 1994
"... The bounded arithmetic theory S 2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T 2 equals S then T 2 is equal to S 2 and proves that the polynomial time hierarchy collapses to # , and, in fact, to the Boolean hierarchy over # and to # i+1 / ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
The bounded arithmetic theory S 2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T 2 equals S then T 2 is equal to S 2 and proves that the polynomial time hierarchy collapses to # , and, in fact, to the Boolean hierarchy over # and to # i+1 /poly .
The Witness Function Method and Provably Recursive Functions of Peano
 Logic, Methodology and Philosophy of Science IX
, 1994
"... This paper presents a new proof of the characterization of the provably recursive functions of the fragments I# n of Peano arithmetic. The proof method also characterizes the # k definable functions of I# n and of theories axiomatized by transfinite induction on ordinals. The proofs are complete ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
This paper presents a new proof of the characterization of the provably recursive functions of the fragments I# n of Peano arithmetic. The proof method also characterizes the # k definable functions of I# n and of theories axiomatized by transfinite induction on ordinals. The proofs are completely prooftheoretic and use the method of witness functions and witness oracles.
Provably Total Functions in
"... This paper investigates the provably total functions of fragments of first and secondorder Bounded Arithmetic. The (strongly) 3 are precisely the (strong) ] functions. The # and U are the EXPTIME [wit, poly] functions and the # definable functions of V 2 are the EXPTI ..."
Abstract
 Add to MetaCart
This paper investigates the provably total functions of fragments of first and secondorder Bounded Arithmetic. The (strongly) 3 are precisely the (strong) ] functions. The # and U are the EXPTIME [wit, poly] functions and the # definable functions of V 2 are the EXPTIME functions. We give witnessing theorems for these theories and prove conservation results 3 over S 3 and for U 2 over V 2 .