Results 1  10
of
20
On the Computational Complexity of Upward and Rectilinear Planarity Testing (Extended Abstract)
, 1994
"... A directed graph is upward planar if it can be drawn in the plane such that every edge is a monotonically increasing curve in the vertical direction, and no two edges cross. An undirected graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical se ..."
Abstract

Cited by 82 (4 self)
 Add to MetaCart
A directed graph is upward planar if it can be drawn in the plane such that every edge is a monotonically increasing curve in the vertical direction, and no two edges cross. An undirected graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical segment, and no two edges cross. Testing upward planarity and rectilinear planarity are fundamental problems in the effective visualization of various graph and network structures. In this paper we show that upward planarity testing and rectilinear planarity testing are NPcomplete problems. We also show that it is NPhard to approximate the minimum number of bends in a planar orthogonal drawing of an nvertex graph with an O(n 1\Gammaffl ) error, for any ffl ? 0.
Upward Planarity Testing
 SIAM Journal on Computing
, 1995
"... Acyclic digraphs, such as the covering digraphs of ordered sets, are usually drawn upward, i.e., with the edges monotonically increasing in the vertical direction. A digraph is upward planar if it admits an upward planar drawing. In this survey paper, we overview the literature on the problem of upw ..."
Abstract

Cited by 81 (15 self)
 Add to MetaCart
Acyclic digraphs, such as the covering digraphs of ordered sets, are usually drawn upward, i.e., with the edges monotonically increasing in the vertical direction. A digraph is upward planar if it admits an upward planar drawing. In this survey paper, we overview the literature on the problem of upward planarity testing. We present several characterizations of upward planarity and describe upward planarity testing algorithms for special classes of digraphs, such as embedded digraphs and singlesource digraphs. We also sketch the proof of NPcompleteness of upward planarity testing.
Optimal upward planarity testing of singlesource digraphs
 SIAM Journal on Computing
, 1998
"... Abstract. A digraph is upward planar if it has a planar drawing such that all the edges are monotone with respect to the vertical direction. Testing upward planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in softwar ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Abstract. A digraph is upward planar if it has a planar drawing such that all the edges are monotone with respect to the vertical direction. Testing upward planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in software engineering, project management, and visual languages. In this paper we investigate upward planarity testing of singlesource digraphs; we provide a new combinatorial characterization of upward planarity and give an optimal algorithm for upward planarity testing. Our algorithm tests whether a singlesource digraph with n vertices is upward planar in O(n) sequential time, and in O(log n) time on a CRCW PRAM with n log log n / log n processors, using O(n) space. The algorithm also constructs an upward planar drawing if the test is successful. The previously known best result is an O(n2)time algorithm by Hutton and Lubiw [Proc. 2nd ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1991, pp. 203–211]. No efficient parallel algorithms for upward planarity testing were previously known.
Algorithms for Drawing Clustered Graphs
, 1997
"... In the mid 1980s, graphics workstations became the main platforms for software and information engineers. Since then, visualization of relational information has become an essential element of software systems. Graphs are commonly used to model relational information. They are depicted on a graphics ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
In the mid 1980s, graphics workstations became the main platforms for software and information engineers. Since then, visualization of relational information has become an essential element of software systems. Graphs are commonly used to model relational information. They are depicted on a graphics workstation as graph drawings. The usefulness of the relational model depends on whether the graph drawings effectively convey the relational information to the users. This thesis is concerned with finding good drawings of graphs. As the amount of information that we want to visualize becomes larger and the relations become more complex, the classical graph model tends to be inadequate. Many extended models use a node hierarchy to help cope with the complexity. This thesis introduces a new graph model called the clustered graph. The central theme of the thesis is an investigation of efficient algorithms to produce good drawings for clustered graphs. Although the criteria for judging the qua...
An Approach for Mixed Upward Planarization
 In Proc. 7th International Workshop on Algorithms and Data Structures (WADS’01
, 2003
"... In this paper, we consider the problem of finding a mixed upward planarization of a mixed graph, i.e., a graph with directed and undirected edges. The problem is a generalization of the planarization problem for undirected graphs and is motivated by several applications in graph drawing. ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
In this paper, we consider the problem of finding a mixed upward planarization of a mixed graph, i.e., a graph with directed and undirected edges. The problem is a generalization of the planarization problem for undirected graphs and is motivated by several applications in graph drawing.
Graph Drawing
 Lecture Notes in Computer Science
, 1997
"... INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducte ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as software engineering, database systems, visual interfaces, and computeraideddesign. Research on graph drawing has been conducted within several diverse areas, including discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and humancomputer interaction (visual languages, graphical user interfaces, software visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 1.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 1.2. Section 1.3 deals with the time complexity of fundamental graph drawin
Layerfree upward crossing minimization
 ACM Journal of Experimental Algorithmics
"... Abstract. An upward drawing of a DAG G is a drawing of G in which all edges are drawn as curves increasing monotonically in the vertical direction. In this paper, we present a new approach for upward crossing minimization, i.e., finding an upward drawing of a DAG G with as few crossings as possible. ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
Abstract. An upward drawing of a DAG G is a drawing of G in which all edges are drawn as curves increasing monotonically in the vertical direction. In this paper, we present a new approach for upward crossing minimization, i.e., finding an upward drawing of a DAG G with as few crossings as possible. Our algorithm is based on a twostage upward planarization approach, which computes a feasible upward planar subgraph in the first step, and reinserts the remaining edges by computing constraintfeasible upward insertion paths. An experimental study shows that the new algorithm leads to much better results than existing algorithms for upward crossing minimization, including the classical Sugiyama approach. 1
Constrained Simultaneous and Nearsimultaneous Embeddings
, 2007
"... A geometric simultaneous embedding of two graphs G1 = (V1, E1) and G2 = (V2, E2) with a bijective mapping of their vertex sets γ: V1 → V2 is a pair of planar straightline drawings Γ1 of G1 and Γ2 of G2, such that each vertex v2 = γ(v1) is mapped in Γ2 to the same point where v1 is mapped in Γ1, wh ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
A geometric simultaneous embedding of two graphs G1 = (V1, E1) and G2 = (V2, E2) with a bijective mapping of their vertex sets γ: V1 → V2 is a pair of planar straightline drawings Γ1 of G1 and Γ2 of G2, such that each vertex v2 = γ(v1) is mapped in Γ2 to the same point where v1 is mapped in Γ1, where v1 ∈ V1 and v2 ∈ V2. In this paper we examine several constrained versions and a relaxed version of the geometric simultaneous embedding problem. We show that if the input graphs are assumed to share no common edges this does not seem to yield large classes of graphs that can be simultaneously embedded. Further, if a prescribed combinatorial embedding for each input graph must be preserved, then we can answer some of the problems that are still open for geometric simultaneous embedding. Finally, we present some positive and negative results on the nearsimultaneous embedding problem, in which vertices are not forced to be placed exactly in the same, but just in “near” points in different drawings.
A parameterized algorithm for upward planarity testing
 In Annual European Symposium on Algorithms (Proc. ESA ’04
, 2004
"... author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii We can visualize a graph by producing a geometric representation of the graph in which eac ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii We can visualize a graph by producing a geometric representation of the graph in which each node is represented by a single point on the plane, and each edge is represented by a curve that connects its two endpoints. Directed graphs are often used to model hierarchical structures; in order to visualize the hierarchy represented by such a graph, it is desirable that a drawing of the graph reflects this hierarchy. This can be achieved by drawing all the edges in the graph such that they all point in an upwards direction. A graph that has a drawing in which all edges point in an upwards direction and in which no edges cross is known as an upward planar graph. Unfortunately, testing if a graph is upward planar is NPcomplete. Parameterized complexity is a technique used to find efficient algorithms for hard
Efficient cplanarity testing for embedded flat clustered graphs with small faces
 PROC. GRAPH DRAWING, VOLUME 4875 OF LNCS
, 2008
"... Let C be a clustered graph and suppose that the planar embedding of its underlying graph is fixed. Is testing the cplanarity of C easier than in the variable embedding setting? In this paper we give a first contribution towards answering the above question. Namely, we characterize cplanar embedded ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Let C be a clustered graph and suppose that the planar embedding of its underlying graph is fixed. Is testing the cplanarity of C easier than in the variable embedding setting? In this paper we give a first contribution towards answering the above question. Namely, we characterize cplanar embedded flat clustered graphs with at most five vertices per face and give an efficient testing algorithm for such graphs. The results are based on a more general methodology that sheds new light on the cplanarity testing problem.