Results 1  10
of
263
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5512 (123 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search) plus learning (association, memory). We argue that RL is the only field that seriously addresses the special features of the problem of learning from interaction to achieve longterm goals.
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 463 (12 self)
 Add to MetaCart
(Show Context)
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
Reinforcement learning for humanoid robotics
 Autonomous Robot
, 2003
"... Abstract. The complexity of the kinematic and dynamic structure of humanoid robots make conventional analytical approaches to control increasingly unsuitable for such systems. Learning techniques offer a possible way to aid controller design if insufficient analytical knowledge is available, and lea ..."
Abstract

Cited by 136 (21 self)
 Add to MetaCart
Abstract. The complexity of the kinematic and dynamic structure of humanoid robots make conventional analytical approaches to control increasingly unsuitable for such systems. Learning techniques offer a possible way to aid controller design if insufficient analytical knowledge is available, and learning approaches seem mandatory when humanoid systems are supposed to become completely autonomous. While recent research in neural networks and statistical learning has focused mostly on learning from finite data sets without stringent constraints on computational efficiency, learning for humanoid robots requires a different setting, characterized by the need for realtime learning performance from an essentially infinite stream of incrementally arriving data. This paper demonstrates how even highdimensional learning problems of this kind can successfully be dealt with by techniques from nonparametric regression and locally weighted learning. As an example, we describe the application of one of the most advanced of such algorithms, Locally Weighted Projection Regression (LWPR), to the online learning of three problems in humanoid motor control: the learning of inverse dynamics models for modelbased control, the learning of inverse kinematics of redundant manipulators, and the learning of oculomotor reflexes. All these examples demonstrate fast, i.e., within seconds or minutes, learning convergence with highly accurate final peformance. We conclude that realtime learning for complex motor system like humanoid robots is possible with appropriately tailored algorithms, such that increasingly autonomous robots with massive learning abilities should be achievable in the near future. 1.
Technical update: Leastsquares temporal difference learning
 Machine Learning
, 2002
"... Abstract. TD(λ) is a popular family of algorithms for approximate policy evaluation in large MDPs. TD(λ) works by incrementally updating the value function after each observed transition. It has two major drawbacks: it may make inefficient use of data, and it requires the user to manually tune a ste ..."
Abstract

Cited by 128 (2 self)
 Add to MetaCart
(Show Context)
Abstract. TD(λ) is a popular family of algorithms for approximate policy evaluation in large MDPs. TD(λ) works by incrementally updating the value function after each observed transition. It has two major drawbacks: it may make inefficient use of data, and it requires the user to manually tune a stepsize schedule for good performance. For the case of linear value function approximations and λ = 0, the LeastSquares TD (LSTD) algorithm of Bradtke and Barto (1996, Machine learning, 22:1–3, 33–57) eliminates all stepsize parameters and improves data efficiency. This paper updates Bradtke and Barto’s work in three significant ways. First, it presents a simpler derivation of the LSTD algorithm. Second, it generalizes from λ = 0 to arbitrary values of λ; at the extreme of λ = 1, the resulting new algorithm is shown to be a practical, incremental formulation of supervised linear regression. Third, it presents a novel and intuitive interpretation of LSTD as a modelbased reinforcement learning technique.
LeastSquares Temporal Difference Learning
 In Proceedings of the Sixteenth International Conference on Machine Learning
, 1999
"... TD() is a popular family of algorithms for approximate policy evaluation in large MDPs. TD() works by incrementally updating the value function after each observed transition. It has two major drawbacks: it makes inefficient use of data, and it requires the user to manually tune a stepsize schedule ..."
Abstract

Cited by 120 (0 self)
 Add to MetaCart
TD() is a popular family of algorithms for approximate policy evaluation in large MDPs. TD() works by incrementally updating the value function after each observed transition. It has two major drawbacks: it makes inefficient use of data, and it requires the user to manually tune a stepsize schedule for good performance. For the case of linear value function approximations and = 0, the LeastSquares TD (LSTD) algorithm of Bradtke and Barto (Bradtke and Barto, 1996) eliminates all stepsize parameters and improves data efficiency. This paper extends Bradtke and Barto's work in three significant ways. First, it presents a simpler derivation of the LSTD algorithm. Second, it generalizes from = 0 to arbitrary values of ; at the extreme of = 1, the resulting algorithm is shown to be a practical formulation of supervised linear regression. Third, it presents a novel, intuitive interpretation of LSTD as a modelbased reinforcement learning technique.
Learning nearoptimal policies with Bellmanresidual minimization based fitted policy iteration and a single sample path
 MACHINE LEARNING JOURNAL (2008) 71:89129
, 2008
"... ..."
Coordinated Reinforcement Learning
 In Proceedings of the ICML2002 The Nineteenth International Conference on Machine Learning
, 2002
"... We present several new algorithms for multiagent reinforcement learning. A common feature of these algorithms is a parameterized, structured representation of a policy or value function. This structure is leveraged in an approach we call coordinated reinforcement learning, by which agents coordinate ..."
Abstract

Cited by 112 (7 self)
 Add to MetaCart
(Show Context)
We present several new algorithms for multiagent reinforcement learning. A common feature of these algorithms is a parameterized, structured representation of a policy or value function. This structure is leveraged in an approach we call coordinated reinforcement learning, by which agents coordinate both their action selection activities and their parameter updates. Within the limits of our parametric representations, the agents will determine a jointly optimal action without explicitly considering every possible action in their exponentially large joint action space. Our methods differ from many previous reinforcement learning approaches to multiagent coordination in that structured communication and coordination between agents appears at the core of both the learning algorithm and the execution architecture. Our experimental results, comparing our approach to other RL methods, illustrate both the quality of the policies obtained and the additional benefits of coordination. 1.
Policy Iteration for Factored MDPs
 In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI00
, 2000
"... Many large MDPs can be represented compactly using a dynamic Bayesian network. Although the structure of the value function does not retain the structure of the process, recent work has suggested that value functions in factored MDPs can often be approximated well using a factored value functi ..."
Abstract

Cited by 95 (6 self)
 Add to MetaCart
(Show Context)
Many large MDPs can be represented compactly using a dynamic Bayesian network. Although the structure of the value function does not retain the structure of the process, recent work has suggested that value functions in factored MDPs can often be approximated well using a factored value function: a linear combination of restricted basis functions, each of which refers only to a small subset of variables. An approximate factored value function for a particular policy can be computed using approximate dynamic programming, but this approach (and others) can only produce an approximation relative to a distance metric which is weighted by the stationary distribution of the current policy. This type of weighted projection is illsuited to policy improvement.
Protovalue functions: A laplacian framework for learning representation and control in markov decision processes
 Journal of Machine Learning Research
, 2006
"... This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by d ..."
Abstract

Cited by 92 (11 self)
 Add to MetaCart
(Show Context)
This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach where global basis functions called protovalue functions (PVFs) are formed using the eigenvectors of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP (iii) A threephased procedure called representation policy iteration comprising of a sample collection phase, a representation learning phase that constructs basis functions from samples, and a final parameter estimation phase that determines an (approximately) optimal policy within the (linear) subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI framework using leastsquares policy iteration (LSPI) as the parameter estimation method (v) Several strategies for scaling the proposed approach to large discrete and continuous state spaces, including the Nyström extension for outofsample interpolation of eigenfunctions, and the use of Kronecker sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs (vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the proposed framework are briefly summarized at the end.