Results 1 
4 of
4
A Lower Bound on the AverageCase Complexity of Shellsort
, 1999
"... We give a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is \Omega\Gamma pn 1+1=p ) for every p. The proof is an example of the use of Kolmogorov complexity (the incompr ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
We give a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is \Omega\Gamma pn 1+1=p ) for every p. The proof is an example of the use of Kolmogorov complexity (the incompressibility method) in the analysis of algorithms. 1 Introduction The question of a nontrivial general lower bound (or upper bound) on the average complexity of Shellsort (due to D.L. Shell [14]) has been open for about four decades [5, 13]. We present such a lower bound for ppass Shellsort for every p. Shellsort sorts a list of n elements in p passes using a sequence of increments h 1 ; : : : ; h p . In the kth pass the main list is divided in h k separate sublists of length dn=h k e, where the ith sublist consists of the elements at positions j, where j mod h k = i \Gamma 1, of the main list (i = 1; : : : ; h k ). Every sublist is sorted using a straightforward insertion sort. The effi...
P.: The averagecase complexity of Shellsort
 Lecture Notes in Computer Science 1644
, 1999
"... We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for 1 1+ any incremental sequence is Ω(pn p) for all p ≤ log n. Using similar arguments, we analyze the averagecase complexity of several oth ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for 1 1+ any incremental sequence is Ω(pn p) for all p ≤ log n. Using similar arguments, we analyze the averagecase complexity of several other sorting algorithms. 1
Analysis of Sorting Algorithms by Kolmogorov Complexity  A Survey
, 2003
"... Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Recently, many results on the computational complexity of sorting algorithms were obtained using Kolmogorov complexity (the incompressibility method). Especially, the usually hard averagecase analysis is ammenable to this method. Here we survey such results about Bubblesort, Heapsort, Shellsort, Dobosiewiczsort, Shakersort, and sorting with stacks and queues in sequential or parallel mode. Especially in the case of Shellsort the uses of Kolmogorov complexity surprisingly easily resolved problems that had stayed open for a long time despite strenuous attacks.
AverageCase Complexity of Shellsort (Preliminary Version)
, 1999
"... Abstract. We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is Ω(pn 1+1/p) for every p. The proof method is an incompressibility argument based on Kolmogorov compl ..."
Abstract
 Add to MetaCart
Abstract. We prove a general lower bound on the averagecase complexity of Shellsort: the average number of datamovements (and comparisons) made by a ppass Shellsort for any incremental sequence is Ω(pn 1+1/p) for every p. The proof method is an incompressibility argument based on Kolmogorov complexity. Using similar techniques, the averagecase complexity of several other sorting algorithms is analyzed. 1