Results 1 
4 of
4
Improvement in a Lazy Context: An Operational Theory for CallByNeed
 Proc. POPL'99, ACM
, 1999
"... Machine The semantics presented in this section is essentially Sestoft's \mark 1" abstract machine for laziness [Sestoft 1997]. In that paper, he proves his abstract machine 6 A. K. Moran and D. Sands h fx = Mg; x; S i ! h ; M; #x : S i (Lookup) h ; V; #x : S i ! h fx = V g; V; S i (Update) h ; ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
Machine The semantics presented in this section is essentially Sestoft's \mark 1" abstract machine for laziness [Sestoft 1997]. In that paper, he proves his abstract machine 6 A. K. Moran and D. Sands h fx = Mg; x; S i ! h ; M; #x : S i (Lookup) h ; V; #x : S i ! h fx = V g; V; S i (Update) h ; M x; S i ! h ; M; x : S i (Unwind) h ; x:M; y : S i ! h ; M [ y = x ]; S i (Subst) h ; case M of alts ; S i ! h ; M; alts : S i (Case) h ; c j ~y; fc i ~x i N i g : S i ! h ; N j [ ~y = ~x j ]; S i (Branch) h ; let f~x = ~ Mg in N; S i ! h f~x = ~ Mg; N; S i ~x dom(;S) (Letrec) Fig. 1. The abstract machine semantics for callbyneed. semantics sound and complete with respect to Launchbury's natural semantics, and we will not repeat those proofs here. Transitions are over congurations consisting of a heap, containing bindings, the expression currently being evaluated, and a stack. The heap is a partial function from variables to terms, and denoted in an identical manner to a coll...
Compilation and Equivalence of Imperative Objects
, 1998
"... We adopt the untyped imperative object calculus of Abadi and Cardelli as a minimal setting in which to study problems of compilation and program equivalence that arise when compiling objectoriented languages. We present both a bigstep and a smallstep substitutionbased operational semantics fo ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
We adopt the untyped imperative object calculus of Abadi and Cardelli as a minimal setting in which to study problems of compilation and program equivalence that arise when compiling objectoriented languages. We present both a bigstep and a smallstep substitutionbased operational semantics for the calculus. Our rst two results are theorems asserting the equivalence of our substitutionbased semantics with a closurebased semantics like that given by Abadi and Cardelli. Our third result is a direct proof of the correctness of compilation to a stackbased abstract machine via a smallstep decompilation algorithm. Our fourth result is that contextual equivalence of objects coincides with a form of Mason and Talcott's CIU equivalence; the latter provides a tractable means of establishing operational equivalences. Finally, we prove correct an algorithm, used in our prototype compiler, for statically resolving method osets. This is the rst study of correctness of an objectoriented abstract machine, and of operational equivalence for the imperative object calculus.
An Equational Theory for a Region Calculus
, 2002
"... A region calculus is a polymorphically typed lambda calculus with explicit memory management primitives. Every value is annotated with a region in which it is stored. Regions are allocated and deallocated in a stacklike fashion. The annotations can be statically inferred by a type and eect syst ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A region calculus is a polymorphically typed lambda calculus with explicit memory management primitives. Every value is annotated with a region in which it is stored. Regions are allocated and deallocated in a stacklike fashion. The annotations can be statically inferred by a type and eect system, making a region calculus suitable as an intermediate language for a compiler of statically typed programming languages.
The λμcalculus: Function and Control
, 1998
"... Parigot's calculus is an intriguing extension of the typed calculus which corresponds via the CurryHoward correspondence to classical logic. Following the seminal work of Grin, it is known that certain control operators can be given types which, when viewed as formulae, are classical but not i ..."
Abstract
 Add to MetaCart
Parigot's calculus is an intriguing extension of the typed calculus which corresponds via the CurryHoward correspondence to classical logic. Following the seminal work of Grin, it is known that certain control operators can be given types which, when viewed as formulae, are classical but not intuitionistic tautologies. Previous computational explanations of the calculus have simply translated terms into an existing control calculus, or presented an operational semantics from which it is hard to determine what is going on. In particular the treatment of a callbyvalue strategy has appeared problematic.