Results 1  10
of
80
The geometry of graphs and some of its algorithmic applications
 Combinatorica
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that r ..."
Abstract

Cited by 457 (19 self)
 Add to MetaCart
In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the distances between their geometric images. In this paper we develop efficient algorithms for embedding graphs lowdimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of problems on multicommodity flows, including the LeightonRae Theorem [29] and some of its extensions. 0 For graphs embeddable in lowdimensional spaces with a small distortion, we can find lowdiameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way, small balanced separators can be found efficiently. Faithful lowdimensional representations of statistical data allow for meaningful and efficient clustering, which is one of the most basic tasks in patternrecognition. For the (mostly heuristic) methods used
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
The objective method: Probabilistic combinatorial optimization and local weak convergence
, 2003
"... ..."
Separators for spherepackings and nearest neighbor graphs
 J. ACM
, 1997
"... Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1 � 1/(d � 2))n balls. This bound of O(k 1/d n 1�1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every knearest neighbor graphs of n points in d dimensions has a separator of size O(k 1/d n 1�1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a diskpacking, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.
PolynomialTime Approximation Schemes for Geometric Graphs
, 2001
"... A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomialtime approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weigh ..."
Abstract

Cited by 71 (4 self)
 Add to MetaCart
A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomialtime approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weight) and for the minimum weight vertex cover problem in disk graphs. These are the first known PTASs for NPhard optimization problems on disk graphs. They are based on a novel recursive subdivision of the plane that allows applying a shifting strategy on different levels simultaneously, so that a dynamic programming approach becomes feasible. The PTASs for disk graphs represent a common generalization of previous results for planar graphs and unit disk graphs. They can be extended to intersections graphs of other "disklike" geometric objects (such as squares or regular polygons), also in higher dimensions.
Minimal surfaces from circle patterns: geometry from combinatorics
 Ann. of Math
"... The theory of polyhedral surfaces and, more generally, the field of discrete differential geometry are presently emerging on the border of differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studie ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
The theory of polyhedral surfaces and, more generally, the field of discrete differential geometry are presently emerging on the border of differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric
Circle Patterns With The Combinatorics Of The Square Grid
 Duke Math. J
, 1997
"... . Explicit families of entire circle patterns with the combinatorics of the square grid are constructed, and it is shown that the collection of entire, locally univalent circle patterns on the sphere is infinite dimensional. In Particular, Doyle's conjecture is false in this setting. Mobius invarian ..."
Abstract

Cited by 33 (1 self)
 Add to MetaCart
. Explicit families of entire circle patterns with the combinatorics of the square grid are constructed, and it is shown that the collection of entire, locally univalent circle patterns on the sphere is infinite dimensional. In Particular, Doyle's conjecture is false in this setting. Mobius invariants of circle patterns are introduced, and turn out to be discrete analogs of the Schwarzian derivative. The invariants satisfy a nonlinear discrete version of the CauchyRiemann equations. A global analysis of the solutions of these equations yields a rigidity theorem characterizing the Doyle spirals. It is also shown that by prescribing boundary values for the Mobius invariants, and solving the appropriate Dirichlet problem, a locally univalent meromorphic function can be approximated by circle patterns. 1991 Mathematics Subject Classification. 30C99, 05B40, 30D30, 31A05, 31C20, 30G25. Key words and phrases. Meromorphic functions, Schwarzian derivative, rigidity, error function, Dirichlet ...