Results 11 
15 of
15
Constructive Analysis with Witnesses
"... Contents 1. Real Numbers 3 2 3 1.2. Reals, Equality of Reals 5 1.3. The Archimedian Axiom 6 1.4. Nonnegative and Positive Reals 6 1.5. Arithmetical Functions 7 1.6. Comparison of Reals 8 1.7. NonCountability 10 1.8. Cleaning of Reals 11 2. Sequences and Series of Real Numbers 11 2.1. Completenes ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Contents 1. Real Numbers 3 2 3 1.2. Reals, Equality of Reals 5 1.3. The Archimedian Axiom 6 1.4. Nonnegative and Positive Reals 6 1.5. Arithmetical Functions 7 1.6. Comparison of Reals 8 1.7. NonCountability 10 1.8. Cleaning of Reals 11 2. Sequences and Series of Real Numbers 11 2.1. Completeness 11 2.2. Limits and Inequalities 13 2.3. Series 13 2.4. Redundant Dyadic Representation of Reals 14 2.5. Convergence Tests 15 2.6. Reordering Theorem 17 2.7. The Exponential Series 18 3. The Exponential Function for Complex Numbers 21 4. Continuous Functions 23 4.1. Suprema and In ma 24 4.2. Continuous Functions 25 4.3. Application of a Continuous Function to a Real 27 4.4. Continuous Functions and Limits 28 4.5. Composition of Continuous Functions 28 4.6. Properties of Continuous Functions 29 4.7. Intermediate Value Theorem 30 4.8. Continuity of Functions with More Than One Variable 32 5. Dierentiation 33 5.1. Derivatives 33 5.2. Bounds on the Slope 33 5.3. Properties of Derivatives 34 5
Number systems and Digit Serial Arithmetic
, 1997
"... this paper. By introducing an extra termination symbol, which signals that an operand was merely terminated due to its length exceeding some bound, operands can be kept as intervals, representing an imprecise operand. Operands terminated in the ordinary way can be taken to represent exact numbers. T ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
this paper. By introducing an extra termination symbol, which signals that an operand was merely terminated due to its length exceeding some bound, operands can be kept as intervals, representing an imprecise operand. Operands terminated in the ordinary way can be taken to represent exact numbers. The cube modeling a function of two variables, can be generalized to a hypercube modeling a polyhomographic function of n variables. For n = 3 the function is defined as:
Two Algorithms for Root Finding in Exact Real Arithmetic
, 1998
"... We present two algorithms for computing the root, or equivalently the fixed point, of a function in exact real arithmetic. The first algorithm uses the iteration of the expression tree representing the function in real arithmetic based on linear fractional transformations and exact floating point. T ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We present two algorithms for computing the root, or equivalently the fixed point, of a function in exact real arithmetic. The first algorithm uses the iteration of the expression tree representing the function in real arithmetic based on linear fractional transformations and exact floating point. The second and more general algorithm is based on a trisection of intervals and can be compared with the wellknown bisection method in numerical analysis. It can be applied to any representation for exact real numbers; here it is described for the sign binary system in [\Gamma1; 1] which is equivalent to the exact floating point with linear fractional transformations. Keywords : Shrinking intervals, Normal products, Exact floating point, Expression trees, Sign Binary System, Iterative method, Trisection. 1 Introduction In the past few years, continued fractions and linear fractional transformations (lft), also called homographies or Mobius transformations, have been used to develop various...
Exact Arithmetic Using the Golden Ratio
, 1999
"... : The usual approach to real arithmetic on computers consists of using oating point approximations. Unfortunately, oating point arithmetic can sometimes produce wildly erroneous results. One alternative approach is to use exact real arithmetic. Exact real arithmetic allows exact real number computat ..."
Abstract
 Add to MetaCart
: The usual approach to real arithmetic on computers consists of using oating point approximations. Unfortunately, oating point arithmetic can sometimes produce wildly erroneous results. One alternative approach is to use exact real arithmetic. Exact real arithmetic allows exact real number computation to be performed without the roundo errors characteristic of other methods. Conventional representations such as decimal and binary notation are inadequate for this purpose. We consider an alternative representation of reals, using the golden ratio. Firstly we look at the golden ratio and its relation to the Fibonacci series, nding some interesting identities. Then we implement algorithms for basic arithmetic operations, trigonometric and logarithmic functions, conversion and integration. These include new algorithms for addition, multiplication, multiplication by 2, division by 2 and manipulating nite and innite streams. Acknowledgements I would especially like to than my supe...
Admissible Digit Sets and a Modified SternBrocot Representation
, 2004
"... We examine a special case of admissible representations of the closed interval, namely those which arise via sequences of a nite number of Mobius transformations. We regard certain sets of Mobius transformations as a generalized notion of digits and introduce sucient conditions that such a \digit ..."
Abstract
 Add to MetaCart
We examine a special case of admissible representations of the closed interval, namely those which arise via sequences of a nite number of Mobius transformations. We regard certain sets of Mobius transformations as a generalized notion of digits and introduce sucient conditions that such a \digit set" yields an admissible representation of [0; +1]. Furthermore we establish the productivity and correctness of the homographic algorithm for such \admissible" digit sets. In the second part of the paper we discuss representation of positive real numbers based on the Stern{Brocot tree. We show how we can modify the usual Stern{Brocot representation to yield a ternary admissible digit set.