Results 1  10
of
29
Convex Grid Drawings of 3Connected Planar Graphs
, 1994
"... We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a lineartime algorithm which, given an nvertex 3connected plane gr ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a lineartime algorithm which, given an nvertex 3connected plane graph G (with n 3), finds such a straightline convex embedding of G into a (n \Gamma 2) \Theta (n \Gamma 2) grid. 1 Introduction In this paper we consider the problem of aesthetic drawing of plane graphs, that is, planar graphs that are already embedded in the plane. What is exactly an aesthetic drawing is not precisely defined and, depending on the application, different criteria have been used. In this paper we concentrate on the two following criteria: (a) edges should be represented by straightline segments, and (b) faces should be drawn as convex polygons. F'ary [6], Stein [14] and Wagner [18] showed, independently, that each planar graph can be drawn in the plane in such a way that ...
A Lineartime Algorithm for Drawing a Planar Graph on a Grid
 Information Processing Letters
, 1989
"... We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid i ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid in the plane in such a way that the edges are straight, nonintersecting line segments. The existence of such straightline embeddings for planar graphs was independently discovered by F'ary [Fa48], Stein [St51], and Wagner [Wa36]; this result also follows from Steinitz's theorem on convex polytopes in three dimensions [SR34]. The first algorithms for constructing straightline embeddings [Tu63, CYN84, CON85] required highprecision arithmetic, and the resulting drawings were not very aesthetic, since they tend to produce uneven distributions of vertices over the drawing area. Rosenstiehl and Tarjan [RT86] noticed that it would be convenient to be able to map veritices of a planar graph into a...
Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing
 In 12 th Symposium on Discrete Algorithms (SODA
, 2001
"... The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar graph. We give a lineartime algorithm that obtains an orderly pair (H
MinimumWidth Grid Drawings of Plane Graphs
 Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science
, 1995
"... Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each pl ..."
Abstract

Cited by 31 (11 self)
 Add to MetaCart
Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each plane graph can be drawn in such a way in a (n \Gamma 2) \Theta (n \Gamma 2) grid (for n 3), and that no grid smaller than (2n=3 \Gamma 1) \Theta (2n=3 \Gamma 1) can be used for this purpose, if n is a multiple of 3. In fact, for all n 3, each dimension of the resulting grid needs to be at least b2(n \Gamma 1)=3c, even if the other one is allowed to be unbounded. In this paper we show that this bound is tight by presenting a grid drawing algorithm that produces drawings of width b2(n \Gamma 1)=3c. The height of the produced drawings is bounded by 4b2(n \Gamma 1)=3c \Gamma 1. Our algorithm runs in linear time and is easy to implement. 1 Introduction The problem of automatic graph drawing ha...
ThreeDimensional Orthogonal Graph Drawing
, 2000
"... vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv I Orthogonal Graph Drawing 1 1
Planar Drawings and Angular Resolution: Algorithms and Bounds (Extended Abstract)
 IN PROC. 2ND ANNU. EUROPEAN SYMPOS. ALGORITHMS
, 1994
"... We investigate the problem of constructing planar straightline drawings of graphs with large angles between the edges. Namely, we study the angular resolution of planar straightline drawings, defined as the smallest angle formed by two incident edges. We prove the first nontrivial upper bound on th ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We investigate the problem of constructing planar straightline drawings of graphs with large angles between the edges. Namely, we study the angular resolution of planar straightline drawings, defined as the smallest angle formed by two incident edges. We prove the first nontrivial upper bound on the angular resolution of planar straightline drawings, and show a continuous tradeoff between the area and the angular resolution. We also give lineartime algorithms for constructing planar straightline drawings with high angular resolution for various classes of graphs, such as seriesparallel graphs, outerplanar graphs, and triangulations generated by nested triangles. Our results are obtained by new techniques that make extensive use of geometric constructions.
An Experimental Comparison of Three Graph Drawing Algorithms (Extended Abstract)
, 1995
"... In this paper we present an extensive experimental study... ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
In this paper we present an extensive experimental study...
A Polyhedral Approach to Planar Augmentation and Related Problems
, 1995
"... . Given a planar graph G, the planar (biconnectivity) augmentation problem is to add the minimum number of edges to G such that the resulting graph is still planar and biconnected. Given a nonplanar and biconnected graph, the maximum planar biconnected subgraph problem consists of removing the minim ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
. Given a planar graph G, the planar (biconnectivity) augmentation problem is to add the minimum number of edges to G such that the resulting graph is still planar and biconnected. Given a nonplanar and biconnected graph, the maximum planar biconnected subgraph problem consists of removing the minimum number of edges so that planarity is achieved and biconnectivity is maintained. Both problems are important in Automatic Graph Drawing. In [JM95], the minimum planarizing k augmentation problem has been introduced, that links the planarization step and the augmentation step together. Here, we are given a graph which is not necessarily planar and not necessarily kconnected, and we want to delete some set of edges D and to add some set of edges A such that jDj + jAj is minimized and the resulting graph is planar, kconnected and spanning. For all three problems, we have given a polyhedral formulation by defining three different linear objective functions over the same polytope, namely ...
A Framework for Drawing Planar Graphs with Curves and Polylines
 J. Algorithms
, 1998
"... We describe a unified framework of aesthetic criteria and complexity measures for drawing planar graphs with polylines and curves. This framework includes several visual properties of such drawings, including aspect ratio, vertex resolution, edge length, edge separation, and edge curvature, as well ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We describe a unified framework of aesthetic criteria and complexity measures for drawing planar graphs with polylines and curves. This framework includes several visual properties of such drawings, including aspect ratio, vertex resolution, edge length, edge separation, and edge curvature, as well as complexity measures such as vertex and edge representational complexity and the area of the drawing. In addition to this general framework, we present algorithms that operate within this framework. Specifically, we describe an algorithm for drawing any nvertex planar graph in an O(n) O(n) grid using polylines that have at most two bends per edge and asymptoticallyoptimal worstcase angular resolution. More significantly, we show how to adapt this algorithm to draw any nvertex planar graph using cubic Bézier curves, with all vertices and control points placed within an O(n) O(n) integer grid so that the curved edges achieve a curvilinear analogue of good angular resolution. Al...