Results 1  10
of
12
Planarizing Graphs  A Survey and Annotated Bibliography
, 1999
"... Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results abo ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results about vertex splitting, thickness, and crossing number are mostly of a structural nature. We also include a brief section on vertex deletion. We do not consider parallel algorithms, nor do we deal with online algorithms.
ThreeDimensional Orthogonal Graph Drawing
, 2000
"... vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv I Orthogonal Graph Drawing 1 1
The Thickness of Graphs: A Survey
 Graphs Combin
, 1998
"... We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a ba ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs. Key words: Thickness, maximum planar subgraph, branch and cut 1 Introduction In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes corresponding to macrocells and of hyperedges corresponding to the nets connecting the cells. A chipdesigner has to place the macrocells on a printed circuit board (which usually consists of superimposed layers), according to several designing rules. One of these requirements is to avoid crossings, since crossings lead to undesirable signals. It is therefore desirable to find ways to handle wi...
On the thickness of graphs of given degree
 Inform. Sci
, 1991
"... The results presented here refer to the determination of the thickness of a graph; that is, the minimum number of planar subgraphs into which the graph can be decomposed. A useful general, preliminary result obtained is Theorem 8: that a planar graph always has a planar representation in which the n ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
The results presented here refer to the determination of the thickness of a graph; that is, the minimum number of planar subgraphs into which the graph can be decomposed. A useful general, preliminary result obtained is Theorem 8: that a planar graph always has a planar representation in which the nodes are placed in arbitrary given positions. It is then proved that, if we have positive integers D and T, such that any graph of degree at most D has thickness at most T: Theorem 9: any graph of degree d has thickness at most T roof { ( d + 1) I D}; Theorem 10: any graph of degree dean always be embedded in a regular graph G 0 of any degree f;. d; Corollary 5: any graph of degree dhas thickness at most roof(d/2); Theorem 12: with D and T defined as above, we have D.;; 4 T 2; Corollary 6: if T = 2, then D.;; 6. We further conjecture that, indeed, the thickness of any graph of degree not exceeding 6 is never more than 2. Since the design and fabrication of VLSI c0111puter chips is essentially a concrete representation of the planar decomposition of a graph, all these results are of direct practical interest. DEDICATION This paper is humbly and affectionately dedicated to my mother, Anne Halton, whose indomitable hope and courageous perseverance in the face of difficulty have been an admirable example to me throughout my life.sine qua non~~ ~ DEFINITIONS Let N = { V1, V2, • o o, vn} be a finite set of nodes (or vertices) and write L(N) = { {x, y}: x E N A y e N A x # y} for the set of all possible edges (i.e., pairs of nodes). If E c; G = (N, E) = (N(G), E(G)) L(N), we call a graph (more precisely, an undirected graph), with n = I Nl nodes specified by
Graph Treewidth and Geometric Thickness Parameters
 DISCRETE AND COMPUTATIONAL GEOMETRY
, 2005
"... Consider a drawing of a graph G in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness. By restricting the edges to be straight, we obtain the geometric thickness. By additionally restri ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Consider a drawing of a graph G in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness. By restricting the edges to be straight, we obtain the geometric thickness. By additionally restricting the vertices to be in convex position, we obtain the book thickness. This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth k, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth k, the maximum book thickness equals k if k ≤ 2 and equals k + 1 if k ≥ 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215–221, 2001]. Analogous results are proved for outerthickness, arboricity, and stararboricity.
MultiDimensional Orthogonal Graph Drawing with Small Boxes
 Proc. 7th International Symp. on Graph Drawing (GD '99
, 1999
"... In this paper we investigate the general position model for the drawing of arbitrary degree graphs in the Ddimensional (D >= 2) orthogonal grid. In this model no two vertices lie in the same grid hyperplane. ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
In this paper we investigate the general position model for the drawing of arbitrary degree graphs in the Ddimensional (D >= 2) orthogonal grid. In this model no two vertices lie in the same grid hyperplane.
Two New Approximation Algorithms for the Maximum Planar Subgraph Problem
, 2006
"... The maximum planar subgraph problem (MPS) is defined as follows: given a graph G, find a largest planar subgraph of G. The problem is NPhard and it has applications in graph drawing and resource location optimization. Călinescu et al. [J. Alg. 27, 269302 (1998)] presented the first approximation a ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The maximum planar subgraph problem (MPS) is defined as follows: given a graph G, find a largest planar subgraph of G. The problem is NPhard and it has applications in graph drawing and resource location optimization. Călinescu et al. [J. Alg. 27, 269302 (1998)] presented the first approximation algorithms for MPS with nontrivial performance ratios. Two algorithms were given, a simple algorithm which runs in linear time for boundeddegree graphs with a ratio 7/18 and a more complicated algorithm with a ratio 4/9. Both algorithms produce outerplanar subgraphs. In this article we present two new versions of the simpler algorithm. The first new algorithm still runs in the same time, produces outerplanar subgraphs, has at least the same performance ratio as the original algorithm, but in practice it finds larger planar subgraphs than the original algorithm. The second new algorithm has similar properties to the first algorithm, but it produces only planar subgraphs. We conjecture that the performance ratios of our algorithms are at least 4/9 for MPS. We experimentally compare the new algorithms against the original simple algorithm. We also apply the new algorithms for approximating the thickness and outerthickness of a graph. Experiments show that the new algorithms produce clearly better approximations than the original simple algorithm by Călinescu et al.
A Genetic Algorithm For Determining The Thickness Of A Graph
, 2000
"... The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness of a given graph is known to be a NPcomplete problem. This paper discusses the possibility of determining the thickness of a graph by a genetic algorithm. Our tests s ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness of a given graph is known to be a NPcomplete problem. This paper discusses the possibility of determining the thickness of a graph by a genetic algorithm. Our tests show that the genetic approach outperforms the earlier heuristic algorithms reported in the literature.
Remarks On The Thickness Of A Graph
 INFO. SCI
, 1996
"... The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. This note discusses some recent attempts to determine upper bounds for the thickness of a graph as a function of the number of edges or as a function of its maximum degree. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. This note discusses some recent attempts to determine upper bounds for the thickness of a graph as a function of the number of edges or as a function of its maximum degree.