Results 1  10
of
11
Planarizing Graphs  A Survey and Annotated Bibliography
, 1999
"... Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results abo ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results about vertex splitting, thickness, and crossing number are mostly of a structural nature. We also include a brief section on vertex deletion. We do not consider parallel algorithms, nor do we deal with online algorithms.
ThreeDimensional Orthogonal Graph Drawing
, 2000
"... vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
vi Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv I Orthogonal Graph Drawing 1 1
The Thickness of Graphs: A Survey
 Graphs Combin
, 1998
"... We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a ba ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs. Key words: Thickness, maximum planar subgraph, branch and cut 1 Introduction In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes corresponding to macrocells and of hyperedges corresponding to the nets connecting the cells. A chipdesigner has to place the macrocells on a printed circuit board (which usually consists of superimposed layers), according to several designing rules. One of these requirements is to avoid crossings, since crossings lead to undesirable signals. It is therefore desirable to find ways to handle wi...
On the thickness of graphs of given degree
 Inform. Sci
, 1991
"... The results presented here refer to the determination of the thickness of a graph; that is, the minimum number of planar subgraphs into which the graph can be decomposed. A useful general, preliminary result obtained is Theorem 8: that a planar graph always has a planar representation in which the n ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
The results presented here refer to the determination of the thickness of a graph; that is, the minimum number of planar subgraphs into which the graph can be decomposed. A useful general, preliminary result obtained is Theorem 8: that a planar graph always has a planar representation in which the nodes are placed in arbitrary given positions. It is then proved that, if we have positive integers D and T, such that any graph of degree at most D has thickness at most T: Theorem 9: any graph of degree d has thickness at most T roof { ( d + 1) I D}; Theorem 10: any graph of degree dean always be embedded in a regular graph G 0 of any degree f;. d; Corollary 5: any graph of degree dhas thickness at most roof(d/2); Theorem 12: with D and T defined as above, we have D.;; 4 T 2; Corollary 6: if T = 2, then D.;; 6. We further conjecture that, indeed, the thickness of any graph of degree not exceeding 6 is never more than 2. Since the design and fabrication of VLSI c0111puter chips is essentially a concrete representation of the planar decomposition of a graph, all these results are of direct practical interest. DEDICATION This paper is humbly and affectionately dedicated to my mother, Anne Halton, whose indomitable hope and courageous perseverance in the face of difficulty have been an admirable example to me throughout my life.sine qua non~~ ~ DEFINITIONS Let N = { V1, V2, • o o, vn} be a finite set of nodes (or vertices) and write L(N) = { {x, y}: x E N A y e N A x # y} for the set of all possible edges (i.e., pairs of nodes). If E c; G = (N, E) = (N(G), E(G)) L(N), we call a graph (more precisely, an undirected graph), with n = I Nl nodes specified by
Graph Treewidth and Geometric Thickness Parameters
 DISCRETE AND COMPUTATIONAL GEOMETRY
, 2005
"... Consider a drawing of a graph G in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness. By restricting the edges to be straight, we obtain the geometric thickness. By additionally restri ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
Consider a drawing of a graph G in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness. By restricting the edges to be straight, we obtain the geometric thickness. By additionally restricting the vertices to be in convex position, we obtain the book thickness. This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth k, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth k, the maximum book thickness equals k if k ≤ 2 and equals k + 1 if k ≥ 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215–221, 2001]. Analogous results are proved for outerthickness, arboricity, and stararboricity.
MultiDimensional Orthogonal Graph Drawing with Small Boxes
 Proc. 7th International Symp. on Graph Drawing (GD '99
, 1999
"... In this paper we investigate the general position model for the drawing of arbitrary degree graphs in the Ddimensional (D >= 2) orthogonal grid. In this model no two vertices lie in the same grid hyperplane. ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
In this paper we investigate the general position model for the drawing of arbitrary degree graphs in the Ddimensional (D >= 2) orthogonal grid. In this model no two vertices lie in the same grid hyperplane.
Apptopinv  user’s guide
, 2003
"... The maximum planar subgraph, maximum outerplanar subgraph, the thickness and outerthickness of a graph are all NPcomplete optimization problems. Apptopinv is a program that contains different heuristic algorithms for these four problems: algorithms based on HopcroftTarjan planarity testing algorit ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The maximum planar subgraph, maximum outerplanar subgraph, the thickness and outerthickness of a graph are all NPcomplete optimization problems. Apptopinv is a program that contains different heuristic algorithms for these four problems: algorithms based on HopcroftTarjan planarity testing algorithm, the spanningtree heuristic and various algorithms based on the cactustree heuristic. Apptopinv contains also a simulated annealing algorithm that can be used to improve the solutions obtained from other heuristics. Most of the heuristics have also a greedy version. We have implemented graph generators for complete graphs, complete kpartite graphs, complete hypercubes, random graphs, random maximum planar and outerplanar graphs and random regular graphs. Apptopinv supports three different graph file formats. Apptopinv is written in C++ programming language for Linuxplatform and GCC 2.95.3 compiler. To compile the program, a commercial LEDA algorithm
A Genetic Algorithm For Determining The Thickness Of A Graph
, 2000
"... The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness of a given graph is known to be a NPcomplete problem. This paper discusses the possibility of determining the thickness of a graph by a genetic algorithm. Our tests s ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness of a given graph is known to be a NPcomplete problem. This paper discusses the possibility of determining the thickness of a graph by a genetic algorithm. Our tests show that the genetic approach outperforms the earlier heuristic algorithms reported in the literature.
Topological Graph Theory  A Survey
 Cong. Num
, 1996
"... this paper we give a survey of the topics and results in topological graph theory. We offer neither breadth, as there are numerous areas left unexamined, nor depth, as no area is completely explored. Nevertheless, we do offer some of the favorite topics of the author and attempt to place them 1 ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
this paper we give a survey of the topics and results in topological graph theory. We offer neither breadth, as there are numerous areas left unexamined, nor depth, as no area is completely explored. Nevertheless, we do offer some of the favorite topics of the author and attempt to place them 1
Remarks On The Thickness Of A Graph
 INFO. SCI
, 1996
"... The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. This note discusses some recent attempts to determine upper bounds for the thickness of a graph as a function of the number of edges or as a function of its maximum degree. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. This note discusses some recent attempts to determine upper bounds for the thickness of a graph as a function of the number of edges or as a function of its maximum degree.