Results 1  10
of
13
The Complexity Of Propositional Proofs
 Bulletin of Symbolic Logic
, 1995
"... This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on
Functional interpretations of feasibly constructive arithmetic
 Annals of Pure and Applied Logic
, 1993
"... i ..."
Theories for Complexity Classes and their Propositional Translations
 Complexity of computations and proofs
, 2004
"... We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus. ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus.
Tautologies From PseudoRandom Generators
, 2001
"... We consider tautologies formed from a pseudorandom number generator, dened in Krajcek [12] and in Alekhnovich et.al. [2]. We explain a strategy of proving their hardness for EF via a conjecture about bounded arithmetic formulated in Krajcek [12]. Further we give a purely nitary statement, in a ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We consider tautologies formed from a pseudorandom number generator, dened in Krajcek [12] and in Alekhnovich et.al. [2]. We explain a strategy of proving their hardness for EF via a conjecture about bounded arithmetic formulated in Krajcek [12]. Further we give a purely nitary statement, in a form of a hardness condition posed on a function, equivalent to the conjecture. This is accompanied by a brief explanation, aimed at nonlogicians, of the relation between propositional proof complexity and bounded arithmetic. It is a fundamental problem of mathematical logic to decide if tautologies can be inferred in propositional calculus in substantially fewer steps than it takes to check all possible truth assignments. This is closely related to the famous P/NP problem of Cook [3]. By propositional calculus I mean any textbook system based on a nite number of inference rules and axiom schemes that is sound and complete. The qualication substantially less means that the nu...
How to Lie Without Being (easily) Convicted and the Lengths of Proofs in Propositional Calculus
"... We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the sec ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the second player is trying to convict him of a lie.
Bounded Arithmetic and Propositional Proof Complexity
 in Logic of Computation
, 1995
"... This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of t ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories S 2 of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of the polynomial time hierarchy. We discuss other axiomatizations of bounded arithmetic, such as minimization axioms. It is shown that the bounded arithmetic hierarchy collapses if and only if bounded arithmetic proves that the polynomial hierarchy collapses. We discuss Frege and extended Frege proof length, and the two translations from bounded arithmetic proofs into propositional proofs. We present some theorems on bounding the lengths of propositional interpolants in terms of cutfree proof length and in terms of the lengths of resolution refutations. We then define the RazborovRudich notion of natural proofs of P NP and discuss Razborov's theorem that certain fragments of bounded arithmetic cannot prove superpolynomial lower bounds on circuit size, assuming a strong cryptographic conjecture. Finally, a complete presentation of a proof of the theorem of Razborov is given. 1 Review of Computational Complexity 1.1 Feasibility This article will be concerned with various "feasible" forms of computability and of provability. For something to be feasibly computable, it must be computable in practice in the real world, not merely e#ectively computable in the sense of being recursively computable.
Bounded Arithmetic and Constant Depth Frege Proofs
, 2004
"... We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from boun ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We discuss the ParisWilkie translation from bounded arithmeticproofs to bounded depth propositional proofs in both relativized and nonrelativized forms. We describe normal forms for proofs in boundedarithmetic, and a definition of \Sigma 0depth for PKproofs that makes the translation from bounded arithmetic to propositional logic particularlytransparent. Using this, we give new proofs of the witnessing theorems for S12and T 12; namely, new proofs that the \Sigma b1definable functions of S12are polynomial time computable and that the \Sigma b1definable functions of T 12 are in Polynomial Local Search (PLS). Both proofs generalize to \Sigma
A BottomUp Approach to Foundations of Mathematics
"... this paper is to survey some results which should give an idea to an outsider of what is going on in this eld and explain motivations for the studied problems. We recommend [3, 5, 15, 11, 34] to those who want to learn more about this subject ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
this paper is to survey some results which should give an idea to an outsider of what is going on in this eld and explain motivations for the studied problems. We recommend [3, 5, 15, 11, 34] to those who want to learn more about this subject
Thirdorder computation and bounded arithmetic
 University of Wales Swansea
, 2006
"... Abstract. We describe a natural generalization of ordinary computation to a thirdorder setting and give a function calculus with nice properties and recursiontheoretic characterizations of several large complexity classes. We then present a number of thirdorder theories of bounded arithmetic whos ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We describe a natural generalization of ordinary computation to a thirdorder setting and give a function calculus with nice properties and recursiontheoretic characterizations of several large complexity classes. We then present a number of thirdorder theories of bounded arithmetic whose definable functions are the classes of the EXPtime hierarchy in the thirdorder setting.
The Complexity Of Derivations Of Matrix Identities
, 2001
"... In this thesis we are concerned with building logical foundations for Linear Algebra, from the perspective of proof complexity. As the cornerstone of our logical theories, we use Berkowitz's parallel algorithm for computing the coecients of the characteristic polynomial of a matrix. STandard ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In this thesis we are concerned with building logical foundations for Linear Algebra, from the perspective of proof complexity. As the cornerstone of our logical theories, we use Berkowitz's parallel algorithm for computing the coecients of the characteristic polynomial of a matrix. STandard