Results 1  10
of
54
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2352 (12 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic logspace) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
Automatic Structures
 IN PROC. 15TH IEEE SYMP. ON LOGIC IN COMPUTER SCIENCE
, 1999
"... We study definability and complexity issues for automatic and wautomatic structures. These are, in general, infinite structures but they can be finitely presented by a collection of automata. Moreover, they admit effective (in fact automatic) evaluation of all firstorder queries. Therefore, automa ..."
Abstract

Cited by 90 (7 self)
 Add to MetaCart
We study definability and complexity issues for automatic and wautomatic structures. These are, in general, infinite structures but they can be finitely presented by a collection of automata. Moreover, they admit effective (in fact automatic) evaluation of all firstorder queries. Therefore, automatic structures provide an interesting framework for extending many algorithmic and logical methods from finite structures to infinite ones. We explain the notion of (w)automatic structures, give examples, and discuss the relationship to automatic groups. We determine the complexity of model checking and query evaluation on automatic structures for fragments of firstorder logic. Further, we study closure properties and definability issues on automatic structures and present a technique for proving that a structure is not automatic. We give modeltheoretic characterisations for automatic structures via interpretations. Finally we discuss the composition theory of automatic structures and pro...
An Optimal Parallel Algorithm for Formula Evaluation
, 1992
"... A new approach to Buss’s NC¹ algorithm [Proc. 19thACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1987, pp. 123131] for evaluation of Boolean formulas is presented. This problem is shown to be complete for NC¹ over AC¬ reductions. This approach is then used to s ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
A new approach to Buss’s NC¹ algorithm [Proc. 19thACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1987, pp. 123131] for evaluation of Boolean formulas is presented. This problem is shown to be complete for NC¹ over AC¬ reductions. This approach is then used to solve the more general problem of evaluating arithmetic formulas by using arithmetic circuits.
Finite Presentations of Infinite Structures: Automata and Interpretations
 Theory of Computing Systems
, 2002
"... We study definability problems and algorithmic issues for infinite structures that are finitely presented. After a brief overview over different classes of finitely presentable structures, we focus on structures presented by automata or by modeltheoretic interpretations. ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
We study definability problems and algorithmic issues for infinite structures that are finitely presented. After a brief overview over different classes of finitely presentable structures, we focus on structures presented by automata or by modeltheoretic interpretations.
Theories for Complexity Classes and their Propositional Translations
 Complexity of computations and proofs
, 2004
"... We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus. ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus.
Semantical Characterizations and Complexity of Equivalences in Answer Set Programming
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2007
"... In recent research on nonmonotonic logic programming, repeatedly strong equivalence of logic programs P and Q has been considered, which holds if the programs P ∪ R and Q ∪ R have the same answer sets for any other program R. This property strengthens the equivalence of P and Q with respect to answe ..."
Abstract

Cited by 27 (11 self)
 Add to MetaCart
In recent research on nonmonotonic logic programming, repeatedly strong equivalence of logic programs P and Q has been considered, which holds if the programs P ∪ R and Q ∪ R have the same answer sets for any other program R. This property strengthens the equivalence of P and Q with respect to answer sets (which is the particular case for R =∅), and has its applications in program optimization, verification, and modular logic programming. In this article, we consider more liberal notions of strong equivalence, in which the actual form of R may be syntactically restricted. On the one hand, we consider uniform equivalence where R is a set of facts, rather than a set of rules. This notion, which is wellknown in the area of deductive databases, is particularly useful for assessing whether programs P and Q are equivalent as components of a logic program which is modularly structured. On the other hand, we consider relativized notions of equivalence where R ranges over rules over a fixed alphabet, and thus generalize our results to relativized notions of strong and uniform equivalence. For all these notions, we consider disjunctive logic programs in the propositional (ground) case as well as some restricted classes, providing semantical characterizations and analyzing the computational complexity. Our results, which naturally extend to answer set semantics for programs with strong negation, complement the results on strong
Are there Hard Examples for Frege Systems?
"... It is generally conjectured that there is an exponential separation between Frege and extended Frege systems. This paper reviews and introduces some candidates for families of combinatorial tautologies for which Frege proofs might need to be superpolynomially longer than extended Frege proofs. S ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
It is generally conjectured that there is an exponential separation between Frege and extended Frege systems. This paper reviews and introduces some candidates for families of combinatorial tautologies for which Frege proofs might need to be superpolynomially longer than extended Frege proofs. Surprisingly, we conclude that no particularly good or convincing examples are known. The examples of combinatorial tautologies that we consider seem to give at most a quasipolynomial speedup of extended Frege proofs over Frege proofs, with the sole possible exception of tautologies based on a theorem of Frankl. It is
Rudimentary Reductions Revisited
 Information Processing Letters 40
, 1991
"... We show that logbounded rudimentary reductions #de#ned and studied by Jones in 1975# characterize Dlogtimeuniform AC . ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
We show that logbounded rudimentary reductions #de#ned and studied by Jones in 1975# characterize Dlogtimeuniform AC .
On the Existence of Hard Sparse Sets under Weak Reductions
, 1996
"... Recently a 1978 conjecture by Hartmanis [Har78] was resolved [CS95], following progress made by [Ogi95]. It was shown that there is no sparse set that is hard for P under logspace manyone reductions, unless P = LOGSPACE. We extend the results to the case of sparse sets that are hard under more gene ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
Recently a 1978 conjecture by Hartmanis [Har78] was resolved [CS95], following progress made by [Ogi95]. It was shown that there is no sparse set that is hard for P under logspace manyone reductions, unless P = LOGSPACE. We extend the results to the case of sparse sets that are hard under more general reducibilities. Our main results are as follows. (1) If there exists a sparse set that is hard for P under bounded truthtable reductions, then P = NC 2 . (2) If there exists a sparse set that is hard for P under randomized logspace reductions with onesided error, then P = Randomized LOGSPACE. (3) If there exists an NPhard sparse set under randomized polynomialtime reductions with onesided error, then NP = RP. (4) If there exists a 2 (log n) O(1) sparse hard set for P under truthtable reductions, then P ` DSPACE[(logn) O(1) ]. As a byproduct of (4), we obtain a uniform O(log 2 n log log n) time parallel algorithm for computing the rank of a 2 log 2 n \Theta n matrix o...