Results 1  10
of
20
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
Accelerated Turing Machines
 Minds and Machines
, 2002
"... Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halti ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Abstract. Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of π contains n consecutive 7s, for any n; solve the Turingmachine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the theoretical limits of computability. Contrary to a recent paper by Bringsjord, Bello and Ferrucci, however, the concept of an accelerating Turing machine cannot be used to shove up Searle’s Chinese room argument.
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental
Computation and Hypercomputation
 MINDS AND MACHINES
, 2003
"... Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification o ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification of any experiment capable of refuting hypercomputation. We consider the implications of relativistic algorithms capable of solving the (Turing) Halting Problem. We also reject as a fallacy the argument that hypercomputation has no relevance because noncomputable values are indistinguishable from sufficiently close computable approximations. In addition to
Even Turing Machines Can Compute Uncomputable Functions
 Unconventional Models of Computation
, 1998
"... Accelerated Turing machines are Turing machines that perform tasks commonly regarded as impossible, such as computing the halting function. The existence of these notional machines has obvious implications concerning the theoretical limits of computability. 2 1. Introduction Neither Turing nor Post ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
Accelerated Turing machines are Turing machines that perform tasks commonly regarded as impossible, such as computing the halting function. The existence of these notional machines has obvious implications concerning the theoretical limits of computability. 2 1. Introduction Neither Turing nor Post, in their descriptions of the devices we now call Turing machines, made much mention of time (Turing 1936, Post 1936). 1 They listed the primitive operations that their devices perform  read a square of the tape, write a single symbol on a square of the tape (first deleting any symbol already present), move one square to the right, and so forth  but they made no mention of the duration of each primitive operation. The crucial concept is that of whether or not the machine halts after a finite number of operations. Temporal considerations are not relevant to the functioning of the devices as described, nor  so we are clearly supposed to believe  to the soundness of the proofs that Turi...
The Broad Conception Of Computation
 American Behavioral Scientist
, 1997
"... A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, somet ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'ChurchTuring thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by Turing machines. In point of fact Turing himself nowhere endorses, nor even states, this claim (nor does Church). I describe a number of notional machines, both analogue and digital, that can compute more than a universal Turing machine. These machines are exemplars of the class of nonclassical computing machines. Nothing known at present rules out the possibility that machines in this class will one day be built, nor that the brain itself is such a machine. These theoretical considerations undercut a numb...
How can Nature help us compute
 SOFSEM 2006: Theory and Practice of Computer Science – 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21–27
, 2006
"... Abstract. Ever since Alan Turing gave us a machine model of algorithmic computation, there have been questions about how widely it is applicable (some asked by Turing himself). Although the computer on our desk can be viewed in isolation as a Universal Turing Machine, there are many examples in natu ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract. Ever since Alan Turing gave us a machine model of algorithmic computation, there have been questions about how widely it is applicable (some asked by Turing himself). Although the computer on our desk can be viewed in isolation as a Universal Turing Machine, there are many examples in nature of what looks like computation, but for which there is no wellunderstood model. In many areas, we have to come to terms with emergence not being clearly algorithmic. The positive side of this is the growth of new computational paradigms based on metaphors for natural phenomena, and the devising of very informative computer simulations got from copying nature. This talk is concerned with general questions such as: • Can natural computation, in its various forms, provide us with genuinely new ways of computing? • To what extent can natural processes be captured computationally? • Is there a universal model underlying these new paradigms?
The nonrandom brain: efficiency, economy, and complex dynamics
 FRONTIERS IN COMPUTATIONAL NEUROSCIENCE
, 2011
"... ..."
On Alan Turing's Anticipation Of Connectionism
, 1996
"... It is not widely realised that Turing was probably the first person to consider building computing machines out of simple, neuronlike elements connected together into networks in a largely random manner. Turing called his networks `unorganised machines'. By the application of what he described as ' ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
It is not widely realised that Turing was probably the first person to consider building computing machines out of simple, neuronlike elements connected together into networks in a largely random manner. Turing called his networks `unorganised machines'. By the application of what he described as 'appropriate interference, mimicking education' an unorganised machine can be trained to perform any task that a Turing machine can carry out, provided the number of 'neurons' is sufficient. Turing proposed simulating both the behaviour of the network and the training process by means of a computer program. We outline Turing's connectionist project of 1948.
Emergence as a ComputabilityTheoretic Phenomenon
, 2008
"... In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well un ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well understood, and (with important exceptions) captured by mathematics from which it is relatively easy to extract algorithmic content. A widespread view is that the difficulty in describing transitions from algorithmic activity to the emergence associated with chaotic situations is a simple case of complexity outstripping computational resources and human ingenuity. Or, on the other hand, that phenomena transcending the standard Turing model of computation, if they exist, must necessarily lie outside the domain of classical computability theory. In this talk we suggest that much of the current confusion arises from conceptual gaps and the lack of a suitably fundamental model within which to situate emergence. We examine the potential for placing emergent relations in a familiar context based on Turing’s 1939 model for interactive computation over structures described in terms of reals. The explanatory power of this model is explored, formalising informal descriptions in terms of mathematical definability and invariance, and relating a range of basic scientific puzzles to results and intractable problems in computability theory. In this talk