Results 1  10
of
80
Compressive sensing
 IEEE Signal Processing Mag
, 2007
"... The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too m ..."
Abstract

Cited by 305 (40 self)
 Add to MetaCart
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uniformly sampling a signal we must sample at least two times faster than its bandwidth. In many applications, including digital image and video cameras, the Nyquist rate can be so high that we end up with too many samples and must compress in order to store or transmit them. In other applications, including imaging systems (medical scanners, radars) and highspeed analogtodigital converters, increasing the sampling rate or density beyond the current stateoftheart is very expensive. In this lecture, we will learn about a new technique that tackles these issues using compressive sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a more general linear measurement scheme coupled with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. 2
Sure independence screening for ultrahigh dimensional feature space
, 2006
"... Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, ..."
Abstract

Cited by 90 (12 self)
 Add to MetaCart
Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using L1 regularization and show that it achieves the ideal risk up to a logarithmic factor log p. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor log p can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the SIS is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be ac
Random projections of smooth manifolds
 Foundations of Computational Mathematics
, 2006
"... We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N ..."
Abstract

Cited by 83 (23 self)
 Add to MetaCart
We propose a new approach for nonadaptive dimensionality reduction of manifoldmodeled data, demonstrating that a small number of random linear projections can preserve key information about a manifoldmodeled signal. We center our analysis on the effect of a random linear projection operator Φ: R N → R M, M < N, on a smooth wellconditioned Kdimensional submanifold M ⊂ R N. As our main theoretical contribution, we establish a sufficient number M of random projections to guarantee that, with high probability, all pairwise Euclidean and geodesic distances between points on M are wellpreserved under the mapping Φ. Our results bear strong resemblance to the emerging theory of Compressed Sensing (CS), in which sparse signals can be recovered from small numbers of random linear measurements. As in CS, the random measurements we propose can be used to recover the original data in R N. Moreover, like the fundamental bound in CS, our requisite M is linear in the “information level” K and logarithmic in the ambient dimension N; we also identify a logarithmic dependence on the volume and conditioning of the manifold. In addition to recovering faithful approximations to manifoldmodeled signals, however, the random projections we propose can also be used to discern key properties about the manifold. We discuss connections and contrasts with existing techniques in manifold learning, a setting where dimensionality reducing mappings are typically nonlinear and constructed adaptively from a set of sampled training data.
Enhancing Sparsity by Reweighted ℓ1 Minimization
, 2007
"... It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many si ..."
Abstract

Cited by 76 (5 self)
 Add to MetaCart
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted ℓ1minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed nearsparsity in overcomplete representations—not by reweighting the ℓ1 norm of the coefficient sequence as is common, but by reweighting the ℓ1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as compressed sensing.
A new compressive imaging camera architecture using opticaldomain compression
 in Proc. of Computational Imaging IV at SPIE Electronic Imaging
, 2006
"... Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible signal contain enough information for reconstruction and processing. It has many promising implications and enables the design of new kinds of Compressive Imaging systems and ..."
Abstract

Cited by 69 (6 self)
 Add to MetaCart
Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible signal contain enough information for reconstruction and processing. It has many promising implications and enables the design of new kinds of Compressive Imaging systems and cameras. In this paper, we develop a new camera architecture that employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with a single detection element while sampling the image fewer times than the number of pixels. Other attractive properties include its universality, robustness, scalability, progressivity, and computational asymmetry. The most intriguing feature of the system is that, since it relies on a single photon detector, it can be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. Imaging Sci
, 2008
"... Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number o ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
Image superresolution as sparse representation of raw image patches. CVPR
, 2008
"... This paper addresses the problem of generating a superresolution (SR) image from a single lowresolution input image. We approach this problem from the perspective of compressed sensing. The lowresolution image is viewed as downsampled version of a highresolution image, whose patches are assumed t ..."
Abstract

Cited by 58 (16 self)
 Add to MetaCart
This paper addresses the problem of generating a superresolution (SR) image from a single lowresolution input image. We approach this problem from the perspective of compressed sensing. The lowresolution image is viewed as downsampled version of a highresolution image, whose patches are assumed to have a sparse representation with respect to an overcomplete dictionary of prototype signalatoms. The principle of compressed sensing ensures that under mild conditions, the sparse representation can be correctly recovered from the downsampled signal. We will demonstrate the effectiveness of sparsity as a prior for regularizing the otherwise illposed superresolution problem. We further show that a small set of randomly chosen raw patches from training images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed representation is sparse and the recovered highresolution image is competitive or even superior in quality to images produced by other SR methods. 1.
1 Image SuperResolution via Sparse Representation
"... Abstract—This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspir ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
Abstract—This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the lowresolution input, and then use the coefficients of this representation to generate the highresolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low resolution and high resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches which simply sample a large amount of image patch pairs, reducing the computation cost substantially. The effectiveness of such a sparsity prior is demonstrated for general image superresolution and also for the special case of face hallucination. In both cases, our algorithm can generate highresolution images that are competitive or even superior in quality to images produced by other similar SR methods, but with faster processing speed. I.
Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation
"... In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relax ..."
Abstract

Cited by 50 (23 self)
 Add to MetaCart
In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relaxation based on a mixed matrix norm. Typically, worstcase analysis is carried out in order to analyze conditions under which the algorithms are able to recover any jointly sparse set of vectors. However, such an approach is not able to provide insights into why joint sparse recovery is superior to applying standard sparse reconstruction methods to each channel individually. Previous work considered an average case analysis of thresholding and SOMP by imposing a probability model on the measured signals. In this paper, our main focus is on analysis of convex relaxation techniques. In particular, we focus on the mixed ℓ2,1 approach to multichannel recovery. We show that under a very mild condition on the sparsity and on the dictionary characteristics, measured for example by the coherence, the probability of recovery failure decays exponentially in the number of channels. This demonstrates that most of the time, multichannel sparse recovery is indeed superior to single channel methods. Our probability bounds are valid and meaningful even for a small number of signals. Using the tools we develop to analyze the convex relaxation method, we also tighten the previous bounds for thresholding and SOMP.
Stability results for random sampling of sparse trigonometric polynomials
, 2006
"... Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that ..."
Abstract

Cited by 49 (17 self)
 Add to MetaCart
Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that recovery both by a BP variant and by OMP is stable under perturbation of the samples values by noise. For BP in addition, the stability result is extended to (nonsparse) trigonometric polynomials that can be wellapproximated by sparse ones. The theoretical findings are illustrated by numerical experiments. Key Words: random sampling, trigonometric polynomials, Orthogonal Matching Pursuit, Basis Pursuit, compressed sensing, stability under noise, fast Fourier transform, nonequispaced